Accelerating Net Zero transition of public transportation systems in the city of Kolkata

© The Energy and Resources Institute, 2023

The material in this publication is copyrighted. Content from this discussion paper may be used for noncommercial purposes, provided it is attributed to the source. Enquiries concerning reproduction should be sent to the address: The Energy and Resources Institute, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi – 110 003, India

Suggested citation: TERI. (2023). Accelerating Net Zero Transition Kolkata. The Energy and Resources Institute.

Project Team Reviewers

Mr K Ramanathan, Distinguished Fellow Mr A K Saxena, Senior Fellow Mr P K Bhattacharya, Senior Fellow

Team Members

Mr S. Gautham, Associate Fellow Mr Tattaiyya Bhattacharjee, Research Associate Mr Gaurav Yadav, Research Associate Mr Mahavir Singh, Research Associate Ms Christie Anil Joseph, Research Associate Mr K Umamaheswaran, Consultant Mr Mukesh Kumar, Research Associate

External Reviewers

Mr Narayankumar Sreekumar & Ms Priyadarshini Alok, Shakti Sustainable Energy Foundation

PUBLISHED BY

The Energy and Resources Institute (TERI)

FOR MORE INFORMATION

TERI, Darbari Seth Block IHC Complex, Lodhi Road, New Delhi 110 003, India Tel: +91 11 2468 2100 or 2468 2111 | Fax: +91 11 2468 2144 or 2468 2145 Email: vkjkumar@teri.res.in | Web: www.teriin.org | http://netzerokolkata.teri.res.in/

Message

The year 2023 is a landmark year for us. The ancestor of WBTC, the Calcutta Tramways Corporation is celebrating its 150th year anniversary and serendipitously enough, CSTC is also celebrating its platinum year of existence. I am also told that this is the 50th year at TERI as well, so this study is coming at a very important juncture for all the stakeholders concerned.

The study delves into the future of electric mobility in Kolkata. It is a very pertinent exercise done. The result is outstanding and my heartiest congratulations go to the study team for successfully completing this study "Accelerating Net Zero Transition of Public Transportation in the city of Kolkata". I would like to thank the study team of TERI comprising of Mr. K. Umamaheswaran, Mr. Tattaiyya Bhattacharjee, Mr. Gaurav Yadav, Mr. S. Gautham, Mr. Mahavir Singh, and Ms. Christie Anil Joseph for the rigorous work that has been carried out for the study.

I would also like to thank Mr. Soumen Maity, Mr. Debabrata Guha and all the members of WBTC for providing the TERI team with all necessary support for the completion of the project.

Mr. Rajanvir Singh Kapur (IAS) Managing Director- WBTC

Acknowledgements

TERI acknowledges the award of the study on **"Accelerating net zero transition of public transportation systems in the city of Kolkata"** by Shakti Sustainable Energy Foundation, New Delhi.

The study team would like to thank **Mr. Narayan Kumar Sreekumar**, Associate Director (e-mobility) and **Ms. Priyadarshini Alok**, Assistant Manager (e-mobility) for their continuous support during the course of this study.

The study would not have been possible without the assistance of the discom officials and the transport department officials. The study team would like to thank the following officials for their support in data collection and sharing valuable insights to make this report informative.

- » Mr. Rajanvir Singh Kapur, IAS, Managing Director, West Bengal Transport Corporation
- » Mr. Debabrata Guha, Senior Engineer, West Bengal Transport Corporation
- » Mr. Rajib Das, Dy. General Manager, Calcutta Energy Supply Corporation
- » Mr. Partha Kumar Nayek, Chief Engineer, West Bengal State Electricity Distribution Company Limited

The study team would like to thank the team of **Arcwhales GIS Solutions** for their contribution towards carrying out the on ground surveys and providing a comprehensive assessment towards this study.

Further, the study team would like to thank the contributions of all participants of the stakeholders' discussions and the participants of the capacity building programme for their active participation and contribute to this study.

Table of Contents

Acknowledgements xi List of Abbreviations xi Executive Summary 1 1. Introduction 5 1.1 West Bengal Electric Vehicle Policy 5 1.2 EV Scenario in Kolkata 6 1.3 Vehicle Routes in Kolkata 7 1.4 Organization of the report 9 2. EV Charging Infrastructure 10 2.1 Types of Chargers 10 2.2 Area Requirements 12 2.3 Existing Public Charging Infrastructure in Kolkata 13 3.4 Impact on Power Distribution Network due to Electric Vehicles 13 3.4 Sessement of Electrification needs 15 3.2 Assessment of Electrification needs 15 3.3 Preparation of Public Transport Electrifications Roadmap 17 3.4 Stackeholder dialogues, Knowledge transfer & Recommendations 17 3.5 Citeria for Site Selection for Charging Stations and Swapping Stations 18 4. Enewable Energy Potential Assessment 20 21 4.3 Power Demand Analysis for e-buses 27 <t< th=""><th colspan="5">Message</th></t<>	Message				
List of Abbreviations xi Executive Summary 1 1. Introduction 5 1.1 West Bengal Electric Vehicle Policy 5 1.2 EV Scenario in Kolkata 6 1.3 Vehicle Routes in Kolkata 7 1.4 Organization of the report 9 2. EV Charger 10 2.1 Types of Chargers 10 2.2 Area Requirements 12 2.3 Existing Public Charging Infrastructure in Kolkata 12 2.4 Impact on Power Distribution Network due to Electric Vehicles 13 3. Method/segsment of Electrification needs 15 3.4 Stakeholder dialogues, Knowledge transfer & Recommendations 17 3.5 Criteria for Site Selection for Charging Stations and Swapping Stations 18 4. Energy Infrastructure for e-Buses 20 20 4.1 Bus Route Analysis for e-buses 20 4.2 Expansion Plans 21 4.3 Power Demand Analysis for e-buses 27 4.4 Renewable Energy Potential Assessment 20 4.5 Recommendation	Acknowledgements	v			
Executive Summary 1 1. Introduction 5 1.1 West Bengal Electric Vehicle Policy 5 1.2 EV Scenario in Kolkata 6 1.3 Vehicle Routes in Kolkata 7 1.4 Organization of the report 9 2. EV Chargers 10 2.1 Types of Chargers 10 2.2 Area Requirements 12 2.4 Impact on Power Distribution Network due to Electric Vehicles 13 3. Method/Distribution Network due to Electric Vehicles 15 3.1 Assessment of Electrification needs 16 3.2 Veheholder dialogues, Knowledge transfer & Recommendations 17 3.4 Stokeholder dialogues, Knowledge transfer & Recommendations 17 3.5 Criteria for Site Selection for Charging Stations and Swapping Stations 18 4. Choreging Plans 26 4.1 Eus Route Analysis 27 4.2 Expansion Plans 26 4.3 Power Demand Analysis for e-buses 27 4.4 Renewable Energy Potential Assessment 20 4.5 Recommend Analysis for e-buses 27 4.4 Renewable Energy Potential Assessment 30	List of Abbreviations	xi			
1. Introduction51.1West Bengal Electric Vehicle Policy51.2EV Scenario in Kolkata61.3Vehicle Routes in Kolkata71.4Organization of the report92. EV Charging Infrastructure102.1Types of Chargers102.2Area Requirements122.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. Methodorogy153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations31	Executive Summary	1			
1.1West Bengal Electric Vehicle Policy51.2EV Scenario in Kolkata61.3Vehicle Routes in Kolkata71.4Organization of the report92. EV Charging Infrastructure102.1Types of Chargers102.2Area Requirements122.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. Methodology153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans254.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations31	1. Introduction	5			
1.2EV Scenario in Kolkata71.3Vehicle Routes in Kolkata71.4Organization of the report92. EV Charging Infrastructure102.1Types of Chargers102.2Area Requirements122.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. Methodology153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations31	1.1 West Bengal Electric Vehicle Policy	5			
1.3Vehicle Routes in Kolkata71.4Organization of the report92. EV Charging Infrastructure102.1Types of Chargers102.2Area Requirements122.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. Methodory153.1Assessment of Electrification needs153.2Assessment of Electrification needs163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations31	1.2 EV Scenario in Kolkata	6			
1.4Organization of the report92. EV Charging Infrastructure102.1Types of Chargers102.2Area Requirements122.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. Methodory153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis for e-buses274.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations31	1.3 Vehicle Routes in Kolkata	7			
2. EV Charging Infrastructure102.1Types of Chargers102.2Area Requirements122.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. MethodJ153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis for e-buses274.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations37	1.4 Organization of the report	9			
2.1Types of Chargers102.2Area Requirements122.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. MethodJypes of Chargers153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans214.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations31	2. EV Charging Infrastructure	10			
2.2Area Requirements122.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. Methodogy153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans214.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations31	2.1 Types of Chargers	10			
2.3Existing Public Charging Infrastructure in Kolkata122.4Impact on Power Distribution Network due to Electric Vehicles133. Methodogy153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	2.2 Area Requirements	12			
2.4Impact on Power Distribution Network due to Electric Vehicles133. Methology153.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Chorging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations31	2.3 Existing Public Charging Infrastructure in Kolkata	12			
3. Method > 15 3.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations18 4. Charging Infrastructure for e-Buses20 4.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	2.4 Impact on Power Distribution Network due to Electric Vehicles	13			
3.1Assessment of Electrification needs153.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans254.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	3. Methodology	15			
3.2Assessment of Power Demand163.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	3.1 Assessment of Electrification needs	15			
3.3Preparation of Public Transport Electrification Roadmap173.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	3.2 Assessment of Power Demand	16			
3.4Stakeholder dialogues, Knowledge transfer & Recommendations173.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Chargiry Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	3.3 Preparation of Public Transport Electrification Roadmap	17			
3.5Criteria for Site Selection for Charging Stations and Swapping Stations184. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	3.4 Stakeholder dialogues, Knowledge transfer & Recommendations	17			
4. Charging Infrastructure for e-Buses204.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	3.5 Criteria for Site Selection for Charging Stations and Swapping Stations	18			
4.1Bus Route Analysis214.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	4. Charging Infrastructure for e-Buses	20			
4.2Expansion Plans264.3Power Demand Analysis for e-buses274.4Renewable Energy Potential Assessment304.5Recommendations32	4.1 Bus Route Analysis	21			
4.3 Power Demand Analysis for e-buses274.4 Renewable Energy Potential Assessment304.5 Recommendations32	4.2 Expansion Plans	26			
4.4 Renewable Energy Potential Assessment304.5 Recommendations32	4.3 Power Demand Analysis for e-buses	27			
4.5 Recommendations32	4.4 Renewable Energy Potential Assessment	30			
	4.5 Recommendations	32			

	•	•	•
v	L	I	L
v	•	•	•

5. Charging Infrastructure for other Transportation Modes	39
5.1 Route Analysis	39
5.2 Power Demand Analysis	48
5.3 Renewable Energy Potential Assessment	48
5.4 Recommendations	49
6. Public fleet Decarbonization Strategy for Kolkata	55
6.1 Pathway to Decarbonize Three-Wheelers	61
6.2 Pathway to Decarbonize Buses	64
6.3 Pathway to Decarbonize Ferries	66
6.4 Reduction of Air Emissions through decarbonization plan	68
6.5 Financial Requirements for Decarbonization	72
7. Stakeholder discussions and capacity building workshop	75
7.1 Creation of a State-level public e-mobility stakeholder consultation group	75
7.2 EV forum-Need of accelerator cell; Nodal person in charge of WBTC	76
7.3 Development of learning programmes	78
8. Conclusions	83
Annexures	86

List of Figures

FIGURE E 1:	Decarbonization pathway for various vehicle segments	4
FIGURE 1:	Highlights of West Bengal EV Policy	5
FIGURE 2:	EV Registration Details of Kolkata	6
FIGURE 3:	Public Transport Fleet of Kolkata	6
FIGURE 4:	Bus Routes decomposition	7
FIGURE 5:	Hourly distribution of bus movement (25 routes)	22
FIGURE 6:	Route analysis of E-buses & Diesel buses	23
FIGURE 7:	E-bus routes operating in Kolkata	24
FIGURE 8:	Operating Bus Routes & E-bus Routes in Kolkata	25
FIGURE 9:	Single Line Diagram for E-bus charging in a depot	27
FIGURE 10:	Weekly charging pattern of E-buses	28
FIGURE 11:	Load curve due to charging of existing E-buses	30
FIGURE 12:	Load curve due to E-bus charging (Case 1a)	33
FIGURE 13:	Arrival & Departure pattern of E-buses (Case1b)	33
FIGURE 14:	Load curve due to E-bus charging (Case2)	34
FIGURE 15:	Arrival & Departure pattern of E-buses (Case 2)	35
FIGURE 16:	Load curve due to charging of e-buses (Case 2)	35
FIGURE 17:	Comparison of Load curves due to e-bus charging (Case 1a, 1b, 2)	37
FIGURE 18:	3-wheeler permitted routes in Kolkata	40
FIGURE 19:	Major locations of 3-wheelers in Kolkata	41
FIGURE 20:	Tram routes in Kolkata	42
FIGURE 21:	Estimated Power Demand due to Public EV charging (60 Locations)	48
FIGURE 22:	Map view of 60 locations for public EV charging	53
FIGURE 23:	Estimated Energy Demand due to public EV charging	54
FIGURE 24:	Decarbonization Pathway for Public Transport in Kolkata	56
FIGURE 25:	Decarbonization Plan for 3-wheelers	62
FIGURE 26:	Deployment schedule of EV Three wheelers	63

Accelerating Net Zero transition of public transportation systems in the city of Kolkata

FIGURE 27:	GHG Emissions Three-Wheeler BAU vs Decarbonization Pathway	63
FIGURE 28:	Baseline scenario projected Number of Buses (BAU)	64
FIGURE 29:	Deployment schedule of EV Buses	65
FIGURE 30:	GHG Emissions, Buses BAU vs Decarbonization Pathway	66
FIGURE 31:	Baseline scenario projected Number of Ferry (BAU)	67
FIGURE 32:	Deployment schedule of EV Ferries	67
FIGURE 33:	GHG Emissions, Ferry BAU vs Decarbonization Pathway	68
FIGURE 34:	Total CO Emission Profiling of Public Transportation in Kolkata	69
FIGURE 35:	Total NOx emission profiling of Public Transportation in Kolkata	70
FIGURE 36:	Total PM emission profiling of Public Transportation in Kolkata	70
FIGURE 37:	Total NH3 emission profiling of Public Transportation in Kolkata	71
FIGURE 38:	Stakeholder Mapping	76
FIGURE 39:	Financial Requirements for Decarbonization	85

List of Tables

TABLE 1:	Energy & Power Demand of 1180 E-buses	2
TABLE 2:	E-bus charging scenarios	2
TABLE 3:	Energy & Power demand of e-2W/3W/4W	3
TABLE 4:	Route Analysis of 3-wheelers	7
TABLE 5:	Existing Ferry Route Details	8
TABLE 6:	Existing Tram Routes (as on August 2022)	9
TABLE 7:	Types of Chargers	11
TABLE 8:	Area requirements for EVCI	12
TABLE 9:	List of existing E-bus chargers in Kolkata	12
TABLE 10:	List of e-bus types operating in Kolkata	20
TABLE 11:	e-bus distribution in Kolkata	20
TABLE 12:	Route analysis of buses in Kolkata	21
TABLE 13:	Allocation of 1180 E-buses in Kolkata	26
TABLE 14:	Battery capacities of planned buses	28
TABLE 15:	Number of charges required and power demand of E-buses	29
TABLE 16:	Outputs of RE potential analysis for E-buses	30
TABLE 17:	Solar Rooftop potential under each WBTC depot	31
TABLE 18:	Chargers required and energy demand due to E-bus charging (Case 2)	36
TABLE 19:	Comparison of different charging schedules for E-buses	38
TABLE 20:	Route Analysis of 3-wheelers	39
TABLE 21:	Revival Strategies for trams	45
TABLE 22:	Ferry details under WBTC	47
TABLE 23:	Analysis of Solar Potential in 60 locations	48
TABLE 24:	Proposed Chargers for various locations	50
TABLE 25:	Phase wise decarbonization plan (2022-50)	58
TABLE 26:	Potential Funding Sources	72
TABLE 27:	List of Stakeholder Interactions	77

List of Abbreviations

WBTC	West Bengal Transport Corporation		
стс	Calcutta Tramways Corporation		
CSTC	Calcutta State Transport Corporation		
WBSTC	West Bengal Surface Transport Corporation		
ccs	Combined Charging System		
GB/T	GuoBiao Tuijian		
NAC	Non Air Conditioned		
L/F	Low Floor		
CESC	Calcutta Electricity Supply Company		
WBSEDCL	West Bengal State Electricity Distribution Company Ltd.		
EV	Electric Vehicle		
RTO	Regional Transport Office		
RTA	Road Transport Authourity		
КМС	Kolkata Municipal Corporation		
BSS	Battery Swapping Station		
CS	Charging Station		
SoC	State of Charge		
GHI	Global Horizontal Irradiance		
GHG	Green House Gases		
CNG	Compressed Natural Gas		
LPG	Liquified Petroleum Gas		
СРО	Charge Power Outlet		
SDG	Sustainable Development Goals		
STU	State Transmission Unit		
CAPEX	Capital Expenditure		
OPEX	Operational Expenditure		
РМ	Particulate Matter		

Executive Summary

West Bengal has a history to be associated with electrification of transportation systems. Kolkata, the capital city of West Bengal, introduced public transportation system running on electricity in 1902 and has also been the first to introduce electric buses for public transport in the city. The introduction of electric mobility represents a unique opportunity to leverage the electricity infrastructure for accelerated and cost-effective mobility deployment.

TERI carried out this study to develop strategies to achieve net zero transportation in the city that would support the Transport and the power department of West Bengal to assess innovative and efficient models for the procurement to deploy advanced fleet systems in the city.

The study brings out the feasible locations for setting up of charging stations throughout the city of Kolkata through the assessment of the existing fleets, routes and carrying out a vehicle density survey in and around the city.

Further, the study analyses the energy demand, power requirement, site suitability of Charging infrastructure for e-2W and e-4W, and battery swapping stations for e-3W. Also, the renewable energy (specifically solar) potential for generation of electricity, along with the decarbonization roadmap for public transport is presented in this report.

Recommendation for e-buses

WBTC aims to achieve a target of 1180 e-buses by 2025, from the present fleet of 80 e-buses. Hence, the charging infrastructure needs to be adequately robust to cater to the increased demand. Two recommendations are proposed in this regard.

Recommendation 1: Having Charging Point Utilization within 50%

Case - 1a: Uncontrolled Charging: In this case it is assumed that the buses get charged in a random manner depending on the existing availability of buses in the depot.

Case – 1b: Controlled Charging: In this case it is assumed that the buses get charged in a predefined manner such that the buses are allocated specific slots in the depot.

Recommendation 2: Having Charging Point Utilization above 50%

Case - 2: Optimized Charging: In this case, it is assumed that the buses primarily get charged during the night time and multiple buses can get charged with a single charger. However, the buses can also get charged intermittently during the daytime at depots.

The energy consumption scenarios of the aforementioned cases are summarized in Table 1:

Case	Type of e-bus	Proposed Charger Type	Proposed Charger rating	Number of Chargers	Power Demand (MW)	Hours of operation of charger per day	Daily Energy Demand (MWh)
Case 1a	9 mtr	Fast Charger only	120 kW (Fast)	548	65.7	8.4	551.88
	12 mtr	Fast Charger only	2*120 kW (Fast)				
Case 1b	9 mtr	Fast Charger only	120 kW (Fast)	548	58.5	8.4	491.4
	12 mtr	Fast Charger only	2*120 kW (Fast)				
Case 2	9 mtr	Fast Charger only	120 kW (Fast)	246	29.5	13.9	410.05
	12 mtr	Fast Charger only	2*120 kW (Fast)				

Table 1: Energy & Power Demand of 1180 E-buses

The charger utilization for the above cases is given in Table 2:

Table 2: E-bus charging scenarios

Sl. No.	Parameters	Case 1A- Uncontrolled Charging	Case 1B- Controlled Charging	Case 2- Optimized Charging
1	Number of Bus depots	14	14	14
2	Number of E-buses/ depot	85	85	85
3	Number of chargers proposed (guns)	548	548	246
4	Type of Charger	CCS	CCS	CCS
5	Rating of Charger/gun	120 kW	120 kW	120 kW
6	Single gun/ Double gun	9m- single gun 12m- double gun	9m- single gun 12m- double gun	9m- single gun 12m- double gun
7	Battery capacity of buses	9m- 200 kWh 12mNAC- 300 kWh 12AC- 400 kWh	9m- 200 kWh 12mNAC- 300 kWh 12AC- 400 kWh	9m- 200 kWh 12mNAC- 300 kWh 12AC- 400 kWh

Contd...

Table 2: Cont.....

SI. No.	Parameters	Case 1A- Uncontrolled Charging	Case 1B- Controlled Charging	Case 2- Optimized Charging
8	Assumed charging	2 hrs.	2 hrs. (conventional)	2 hrs.
	time per bus	(conventional) + 45	+ 45 mins.	(conventional) + 45
		mins. Opportunity	(Opportunity)	mins. (Opportunity)
9	Time of maximum utilization of charger (in hrs.)	8.4	8.4	13.9
10	Peak Demand	65.7 MW	58.5 MW	29.5 MW
11	Charger Utilization	35%	34%	58%

Recommendation for e-2W, e-3W and e-4W

The site suitability analysis following route mapping and field survey has yielded the following results.

Type of vehicle	Proposed Charger Type	Proposed Charger rating	Number of Chargers	Power Demand (kW)	Hours of operation of charger	Energy Demand (kWh)
e-2W	Slow Charging only	10kW	34	340	12	4080
e-3W	BSS Only	30kW	22	660	12	7920
e-4W	Slow Charging	15kW (AC Type 2)	48	720	12	8640
	Fast Charging	50 kW (DC Type)	20	1000	12	12000
Total			124	2720		32640

Table 3: Energy & Power demand of e-2W/3W/4W

It can be observed that the total energy demand is 32.64 MWh for the chargers, and the sites have been identified at 60 locations comprising 124 chargers.

Three stakeholder consultations were conducted in between May 2022 and March 2023, and one capacity building workshop was organized in May 2023. The capacity building workshop was organized for WBTC technical and managerial department employees on the following topics.

Technical Departments	Managerial Departments
» Charging Technologies	» Charging Scheduling
» Charging Infrastructure	» Operations
» Load Estimation	» Financial Models
» Green Energy Utilisation	» Revenue Streams
» Asset Utilisation	» Integrated Fleet Operation

Decarbonization Strategy

Public fleet Decarbonization strategy for Kolkata was also prepared as part of this study outlining a deployment schedule of Public buses under WBTC, ferries, and 3-wheelers till 2050. The roadmap also identifies the potential impact on air pollution and greenhouse gas emissions in the city because of electrifying public transportation systems, as well as opportunities for integrating renewable power with these systems. In addition, the roadmap enables WBTC to identify potential funding sources and revenue streams to facilitate fleet electrification and associated infrastructure upgrades.

FIGURE E 1: Decarbonization pathway for various vehicle segments

* Only buses under WBTC are being considered for the study

1. Introduction

The city of Kolkata is spread linearly along the banks of the Hooghly river, with extensive mangrove systems and tidal flats on the fringes of the city. Being one of the major economic centres, transportation is a key driver for the city. There exist multiple modes of transport for commute in the city. Public transportation includes buses, ferries, three-wheelers, urban freight, cabs and tramways. Private transportation includes cars and two wheelers.

The electricity supply in the city is catered by two DISCOMs namely- Calcutta Electricity Supply Company (CESC) and the West Bengal State Electricity Distribution Corporation Limited (WBSEDCL).

1.1 West Bengal Electric Vehicle Policy

The Power Department of the West Bengal Government released the Electric Vehicle Policy in 2021 with validity of 5 years, i.e. until 2026. The key highlights of the Kolkata EV Policy are depicted in the Figure 1:

Specifically for the Charging Infrastructure, the Policy encourages setting up of swapping stations in the form of kiosk to service two-wheelers and three-wheelers. Also, existing private building and commercial buildings will set up charging/battery swapping stations. The discom is obligated to release supply to the charging stations and the swapping stations within 48 hours of application¹.

https://wbpower.gov.in/wp-content/uploads/Electric%20Vehicle%20Policy%202021%20(Kolkata%20Gazette%20 Notification).pdf

1.2 EV Scenario in Kolkata

The vehicles in Kolkata are registered across 7 Regional Transport Offices (RTOs) namely PVD Kolkata, Kasba, Salt Lake, Behala, Alipore, Barrackpore, and Barasat. The EV Registration in West Bengal and Kolkata during 2013-2022 is shown in the Figure 2. It is observed that there is an increasing trend of adoption of EV in Kolkata over the years, except during the COVID period of 2020-21 when it had a fall.

FIGURE 2: EV Registration Details of Kolkata

Source: Vahan Database

The Kolkata Public transport fleet details are given in the Figure 3:

FIGURE 3: Public Transport Fleet of Kolkata

Source: WBTC and Transport Department

1.3 Vehicle Routes in Kolkata

Bus Routes

There are 348 bus routes being operated by WBTC out of which 215 routes (62%) are for intra-city movement and the rest (38%) are for inter-city movement. WBCSTC (44%) operates on most of the routes, followed by WBCTC (40%) and WBSTC (16%). The average operational time is of the order of 12 hours for the intra-city route. The details of the routes of WBTC in Kolkata are provided in Figure 4:

FIGURE 4: Bus Routes decomposition

Three wheelers' Routes

The three-wheelers are operated by private owners on routes permitted by the Road Transit Authority (RTA). There are currently 489 approved routes within which the 37,211 three-wheelers/ autos are allowed to operate throughout Kolkata. The jurisdiction includes the Kolkata Metropolitan Area, Howrah, Bidhannagar and Barrackpore. Details are given below in Table 4:

Table 4:	Route	Analysis	s of 3-wheele	ers
----------	-------	----------	---------------	-----

Parameter	Numbers
Total road distance covered by 3-Wheelers (km) per day	2542
Average distance covered by a 3-Wheeler (km) per day	5.25
Number of three wheelers/km	14.6
Number of Locations with 3 –wheeler operations	152
Number of hotspots (permits more than 1000)	3
Contribution of hotspots in terms of number of permits	25%

Ferry Routes

There are currently 33 operational ferries under the WBTC. The overall operation and management is overseen by the West Bengal Surface Transport Corporation (WBSTC). Out of the 33 operational ferries, there are 29 Cross Ferry Vessels which help in public transportation and operate on a regular basis. There are 4 cruise type ferries which operate 2-3 times a month and are mostly used for the purpose of tourism.

SI. No.	Origin	Destination	Via (if any)	Route Distance (km)	Route duration (min.)	Frequency (min.)	Ticket Price (Rs.)
1	Belur	Dakshineshwar	-	4	25	30	11
2	Belur	Kutighat	-	2	7	20	6
3	Belur	Bagbazar	-	4	25	30	11
4	Fairlie	Kutighat	Bagbazar - Kashipur - Ratan Babughat	9.5	60	20	11
5	Shipping	Belur	Howrah - Bagbazar	9.5	60	20	21
6	Howrah	Fairlie (BBD Bag)	-	1	6	5	6
7	Howrah	Shipping	-	1	8	7	6

Table 5: Existing Ferry Route Details

Source: WBTC

Tram Routes

The total number of trams in possession of the company is 252, out of which 138 trams are regularly maintained and are ready to operate. The actual number of operating trams is 18-20 along the currently operating routes, given in the Table 6. The depots which are currently under operation for scheduled maintenance and deployment are Rajabazar, Park Circus, Gariahat, Tollygunge, Khidirpur, and Esplanade.

SI. No.	Route No.	Origin	Destination	Via	Distance (one way) in km	No. of Operating Trams	Duration (min.)	Ticket Price (Rs.)
1	36	Khidirpur	Esplanade	Fort William	5	Non-Opera	tional	
2	24/29	Ballygunge	Tollygunge	Rashbehari	5.5	8	35	6-7
3	25	Esplanade	Gariahat	Park street	8	10	45	6-7
4	5	Shyambazar	Esplanade	College	5.5	Non-Opera	tional	
				Street				
5	18	Howrah	Bidhannagar	Rajabazar	9	Non-Opera	tional	
		Bridge	Station					
6	11	Shyambazar	Howrah	Vivekananda	6	Non-Opera	tional	
			Bridge	Park				

Table 6: Existing Tram Routes (as on August 2022)

Source: WBTC

1.4 Organization of the report

Chapter 1- A brief introduction about the West Bengal EV Policy, existing EV Scenario in Kolkata, and vehicle fleet & routes for public transport.

Chapter 2- Details on EV charger: types of chargers, rating of chargers and other technical specifications.

Chapter 3- Approach, Methodology and strategy adopted for the study.

Chapter 4- Details of power demand and energy demand for the e-buses in Kolkata

Chapter 5- Details of power demand and energy demand for the e-2W, e-3W, and e-4W in Kolkata

Chapter 6- Details the public fleet decarbonization strategy for Kolkata

Chapter 7- A brief on the stakeholder discussions and capacity building workshop

Chapter 8- Summary of the recommendations and conclusion of the report.

2. EV Charging Infrastructure

The Electric vehicle (EV) Charging Infrastructure comprises of the electricity supply (which includes distribution transformer(s)), energy meters, cables and distribution panels, which provide reliable input power supply to Electric Vehicle Supply Equipment (EVSE). For efficient EV charging, proper networking and communication among DISCOM/grid operators, EVSE and EV should be enabled for charging, monitoring and management as a grid resource.

The EVSE is classified based on the type of charging technology used. It can be categorised as below;

- Slow Charging: Slow charging is typically used for charging through chargers rated between 3 kW and 6 kW. It generally takes about 6-8 h for charging an EV through a slow charger rated around 3 kW. Slow chargers make use of an on-board charger, which is sized based on input voltage from the grid.
- Fast Charging: This technology uses chargers having high power output that are capable of charging an EV in minimum 15 minutes up to 80% of battery state of charge (SoC). These types of chargers are in the range of 20–100kW power rating. Fast charging is normally used for four-wheelers, and e-buses, which have a higher battery capacity.
- Battery Swapping: This form of charging technology involves replacement of a depleted EV battery by a fully charged new battery, instead of re-charging the depleted on-board battery. In battery swapping, EV users swap their empty batteries with charged batteries at swapping station. The EV user hence does need not buy battery during purchase of EV.
- » Fast charging is generally required for EVs to support ongoing trips, such as major road networks, or on highways.

2.1 Types of Chargers

Table 7 gives the types of chargers, as per Ministry of Power, that are available in India. Broadly, the chargers are classified into Fast Charging and Slow Charging.

S. No.	Charger Type	Charger Connectors	Rated Output Voltage (V)	No. of connector guns (CG)	Charging Vehicle Type (W=Wheeler)
1	Fast	Combined Charging System (CCS) (min 50 kW)	200-750 or higher	1 CG	4 W
2	Fast	CHArge de Move (CHAdeMO) (min 50 kW)	200-500 or higher	1 CG	4 W
3	Fast	Type 2 AC (min 22 kW)	380-415	1 CG	4 W, 3 W, 2 W
4	Slow/ Moderate	Bharat DC-001 (15 kW)	48	1 CG	4 W, 3 W, 2 W
5	Slow/ Moderate	Bharat DC-001 (15 kW)	72 or higher	1 CG	4 W
6 Source	Slow/ Moderate	Bharat AC-001 (10 kW)	230	3 CG of 3.3 KW each)	4 W, 3 W, 2 W

Table 7: Types of Chargers

Apart from these chargers, other chargers can also be installed provided they meet the requisite standards set out by Bureau of Indian Standards. The types of EV Chargers are given below:

Charger Name	Image
Bharat AC 001	
Bharat DC 001	
Type 2 Charger	
CCS Charger	
GB/T Bus Charger	

2.2 Area Requirements

The area requirements for the setting up of EV charging station for e-2W, e-3W and e-4W are given in Table 8:

Table 0. Alea requirements for LVC

Type of Vehicle	Space Requirement for vehicle parking (length x width)	Space Requirement for charger installation (length x width)	Total Area Required
e-2W	2.5m x 1.4m	1m x 1.4m	4.90 sq. m.
e-3W	4m x 2m	1m x 2m	10 sq. m.
e-4W	5.5m x 2.5m	1m x 2.5m	16.25 sq. m.

Source: TERI Analysis and NITI Aayog report on EV

For e-buses, the chargers are proposed to be located in the bus depots only.

2.3 Existing Public Charging Infrastructure in Kolkata

E-buses

When the study was undertaken, Kolkata already had deployed Electric Vehicle Charging Infrastructure for 80 operating E-buses in the city. The Table 9 shows the existing Charging infrastructure for buses:

S.No.	List of Charging Stations	Fast Chargers (120 kW)	Slow Chargers (60 kW)	DISCOM	Total Rating (kW)
1	Satragachi	1	0	WBSEDCL	120
2	Nabanna	1	0	WBSEDCL	120
3	Howrah Station	2	0	CESC	240
4	Korunamoyee	1	0	WBSEDCL	120
5	New Town	1	0	WBSEDCL	120
6	Raja Bazar	0	1	CESC	60
7	Gariya	1	0	CESC	120
8	Tollygunge	2	0	CESC	240
9	Airport	1	0	CESC	120
10	Digha*	1	1	CESC	180
11	Howrah Depot	1	6	CESC	480

Table 9: List of existing E-bus chargers in Kolkata

Contd...

S.No.	List of Charging Stations	Fast Chargers (120 kW)	Slow Chargers (60 kW)	DISCOM	Total Rating (kW)
12	Belghoria Depot	1	6	CESC	480
13	Thakurpukur Depot	1	6	CESC	480
14	Lake Depot	1	6	CESC	480
15	Nonapukur Depot	1	7	CESC	540
16	Gariahat Depot	1	6	CESC	480
17	Kasba Depot	1	6	CESC	480
18	New Town Depot	1	6	WBSEDCL	480
19	Salt Lake Depot	1	6	WBSEDCL	480
	Total (for 80 E-buses)	20	57		5820

Table 9: Contd...

Source: WBTC

* Digha is outside city limits

Public EV Charging

In the case of Public EV charging infrastructure, there are currently more than 125 chargers installed in over 70 locations in the city of Kolkata (including Howrah) which are under the supply area of WBSEDCL. The type of chargers used and the details are attached in the Annexure. Based on the information, it is seen that most of the chargers installed in the public charging station is either CCS type or Wall-socket type. In the CESC supply area, there are about 20 public EV charging stations.

2.4 Impact on Power Distribution Network due to Electric Vehicles

The EVs may be considered as active loads during charging, as they increase the demand on the power distribution network. This shall result in an impact on the network loading, voltage profile, phase imbalance and power quality. Hence, directly or indirectly, the EVs shall play an important role in augmented power consumption.

Network loading shall increase due to the charging load of EV, and sufficient line capacity needs to be maintained to cater to the increased demand. This shall prevent in network congestion and assist in smooth operation of all network loads. However, the use of BESS system or availing green energy open access exclusively for the Charging Infrastructure may be considered and a suitable feasibility study forms a part of further study.

Phase Imbalance may be caused due to EV Charging if the load is not evenly distributed across the three phases. It may occur due to voltage imbalance, current imbalance or due to both. However, by ensuring equal loading on all the three phases, the phase imbalance effect can be mitigated.

EV Charging can result in the formation of voltage and current harmonics. The level of current harmonic emission from EV charging depends on factors such as charger circuit topology, power level, on the supply voltage distortion (background distortion), and on the network impedance. EV charging can also contribute to formation of interharmonics and supraharmonics in the distribution network with charging infrastructure.

3. Methodology

The study was carried out in the following manner:

- » Assessment of Electrification needs
- » Assessment of Power Demand
- » Preparation of Public Transport Electrification Roadmap
- » Stakeholder dialogues, Knowledge transfer & Recommendations

3.1 Assessment of Electrification needs

TERI carried out the following tasks for assessment of electrification needs:

The data for the fleet size and routes of the existing public transport was collected through primary & secondary research:

- » The data for buses, 3-wheelers, ferries and trams were collected from the state transport authority (WBTC), and the Transport Department of West Bengal.
- » The data for the number registered vehicles for 2013-2022 were taken from the Vahan database for each RTO under Kolkata city.

Upon analysis of the fleet size and the routes, 60 locations were identified which were feasible for the installation of charging stations for electric vehicles. After conducting site survey & traffic survey in these locations, we found out the feasible locations & technology for setting up the charging infrastructure. Further details in regard to the analysis are given in the chapter 5 of the report. Moreover, based on the surveys and stakeholder interactions with the transport authorities, we have estimated the future demand of electric vehicles through a statistical modelling till 2030.

3.2 Assessment of Power Demand

TERI carried out the following tasks for the assessment of power demand:

The single line diagrams, utility load curves and electricity bills for the chargers under WBTC collected from WBTC and CESC for the public transport routes framed the basis of assessment of power demand. For e-buses, the analysis of energy and power requirements was carried out by observing the daily load pattern due to charging of existing 80 e-buses and projecting the same for 1180 E-buses with different control mechanisms. For vehicles other than e-buses, the analysis for energy & power requirements was done after determining the sites & technology used for setting up the charging infrastructure. The assessment of Renewable Energy (solar) potential was also carried in the sites under WBTC bus depots and the 60 potential sites for EV charging infrastructure.

3.3 Preparation of Public Transport Electrification Roadmap

TERI carried out the following tasks for the preparation of public transport electrification roadmap:

The data regarding the fleet size of the existing public transport was done through primary and secondary research as performed during the preparation of the GHG inventory. The existing policies and the future envisaged policies were identified which aimed towards decarbonization. An implementation/ deployment plan is prepared.

Further details in regard to the analysis are given in the chapter 6 of the report.

3.4 Stakeholder dialogues, Knowledge transfer & Recommendations

TERI carried out the following tasks for stakeholder dialogues, knowledge transfer:

Accelerating Net Zero transition of public transportation systems in the city of Kolkata

The stakeholders were identified based on periodical interactions and consultations with WBTC during the field surveys and data collection. Regarding the same, three stakeholder workshops and one capacity-building workshop (for WBTC employees) were also conducted, the details of which are provided in Chapter 7 of the report. Moreover, an awareness campaign was also conducted as a part of the outreach programme of this project.

3.5 Criteria for Site Selection for Charging Stations and Swapping Stations

The following criteria was adopted while selecting the locations for Charging Stations and Swapping Stations for the city of Kolkata

General Considerations

- » Available Land area must not be a private property
- » Proposed land where chargers is set up should be easily accessible by the vehicles

Area Requirements

- » For Battery Swapping Stations (BSS): Minimum area of 15.125 sq.m. is required
- » For Charging Station (CS) Infrastructure: Minimum area of 105 sq.m. is required
- » The area considered caters to the requirement of installation of ancillary equipment to the EV Charging Stations
- » For Buses, the charging stations are considered to be installed in the bus depots only.

Traffic Considerations

- » Traffic density of 2W, 3W and 4W are captured separately to individually identify the suitable location for setting up of BSS and CS.
- » Adequate parking area for the vehicles is also considered

Power Infrastructure Requirements

» Mapping of Energy demand and Power Demand to ensure optimum loading of power infrastructure.

4. Charging Infrastructure for e-Buses

Buses are the prime means of public transportation in the city. These buses are operated from 28 depots whose infrastructure and operation is also managed by WBTC. Out of the 1633 buses that are operated by WBTC, 80 buses were deployed under FAME-I and being run throughout the state. In Kolkata, presently 75 E-buses are being operated for public transit. All the buses are manufactured by TATA Motors and delivered to the state on 2019. The 80 E-buses deployed with battery capacities of 125 kWh for 9m type and 187.5 kWh for 12m type. The seating capacity is 30 for 9m E-bus and 40 for 12m e-bus.

Policy Framework	Bus Type	Number of Buses Plied	Battery Size (kWh)	Driving Range (km)
FAME-1	Type 1- 9m, 30 seater	40	125	125
	Type 2- 12m, 40 seater	40	187.5	160
FAME-2	12m, 40 seater	10/50	200	-

Table 10: List of e-bus types operating in Kolkata

The distribution of e-buses to the various depots is given below;

Sl. No	Depot	9m e-Bus	12m e-Bus	Total e-buses
1	Belgharia	8	0	8
2	Kasba	0	8	8
3	Nonapukur	0	5	5
4	Thakurpukur	4	4	8
5	Howrah	5	5	10
6	Salt Lake	0	8	8
7	Lake	8	0	8
8	Gariahat	10	0	10
9	New Town	0	10	10
10	Digha*	5	0	5
	Total	40	40	80

4.1 Bus Route Analysis

There are 348 routes being operated by WBTC out of which 215 routes (62%) are for intra-city movement and the rest (38%) are for inter-city movement. The average route length is between 6 – 55 kms, with the average of 22 km. Upon analysis, it was found that 76% or more than 3/4th of the routes fall under the range of 10-30 km per route. The average number of trips made by a bus is between 2 to 3. The average number of buses plied in a route is between 4 and 5. The total distance run each day by a diesel bus on an average is 120 km, the lowest being 55 km and the highest being 234 km. It was found that more than 80% of the buses covered a distance between 55-150 km/day.

The route analysis for 25 routes was also done in order to find out the peak hours of bus operation and the consumer behaviour. The details of the bus routes with time tables are specified in the table below. Upon analysis of the time table of the buses of 25 routes, where more than 100 buses are in operation, the peak hours of movement were found to be from 7-10 AM and 2-6 PM. The average duration of these routes (one-way) was 1 hour and 21 minutes with an average speed of 20 km/hr.

SI. No.	Route Number	Route Length (km)	Origin	Destination	Route Duration (hrs)	Speed (km/hr)
1	AC-4A	29	Parnashri	Sapoorji	01:27	20
2	AC-12	25	New Town (Sapoorji)	Howrah	01:15	20
3	AC-12D	21	Joka	Howrah	01:03	20
4	AC-14	39	Baruipur	Karunamoyee	01:39	24
5	AC-20	41.5	Santragachi	Barrackpore	01:03	40
6	AC-24	21	Patuli	Howrah	01:10	18
7	AC-37A	33	Garia	Air Port	01:39	20
8	AC-43	32.5	Golf Green	Air Port	01:38	20
9	AC-47	27	Kundghat	Sapoorji	01:50	15
10	S-3W	31	Joka	Eco Space	01:45	18
11	S-4	29	Parnashree	Karunamoyee	01:30	19
12	S-5C	21	Nayabad	Howrah	01:28	14
13	S-9A	21	Dunlop	Ballygunge	01:24	15
14	S-10	22	Airport	Nabanna	01:13	18
15	S-11	40	Neilgunj	Esplanade	01:35	25
16	S-12	20.5	New Town	Howrah	01:00	21

Table 12: Route analysis of buses in Kolkata

Tabl	e 12:	Contd.	•••
------	-------	--------	-----

SI. No.	Route Number	Route Length (km)	Origin	Destination	Route Duration (hrs)	Speed (km/hr)
17	S-12E	27.5	Howrah Station	Ecospace	01:20	21
18	S-16	27.50	Thakurpukur	Salt Lake	01:24	20
19	S-17A	24	Ariadaha	Kundghat	01:02	23
20	S-21	21.00	Garia	Baghbazar	01:03	20
21	S-23A	31.50	Rajchandrapur	Karunamoyee	01:18	24
22	S-24	21.5	Kamalgazi	Howrah	01:07	19
23	S-32	28.50	Barrackpore	Howrah	01:33	18
24	S-46	28.00	Karunamoyee	Akra/	01:24	20
				Rabindranagar		
25	S-47	22.5	Eden City	Howrah	01:08	20

FIGURE 5: Hourly distribution of bus movement (25 routes)

Out of the 215 Bus routes under WBTC in Kolkata, the 75 E-buses in the city presently operate only at 12 routes. The details of E-bus routes are provided in the annexure. The average route length of E-bus routes lies between 13 km and 35 km, with the average being 25 km. There are 2-4 trips made by each bus on its route. The number of buses plied in a route varies between 4 and 10. The average distance covered by an E-bus per day is 133 km. The maximum distance covered is 210 km, whereas the minimum distance covered is 78 km.

FIGURE 6: Route analysis of E-buses & Diesel buses

FIGURE 7: E-bus routes operating in Kolkata

FIGURE 8: Operating Bus Routes & E-bus Routes in Kolkata

4.2 Expansion Plans

The WBTC is planning to deploy 1180 more E-buses by 2025 in addition to the already operating 80 E-buses in their fleet. The total number of E-buses in the WBTC fleet by the end of 2025 will be 1260. The bifurcation of the buses based on the bus type (9m/ 12m) and depot are presented below. Some of the specifications of this planned are:

The other details of these buses such as battery capacity, operating routes, frequency of operation are yet to be specified by the WBTC in the public domain.

SI. No	Depot	9 Mtr AC	9 Mtr NAC	12 Mtr L/F AC	12 Mtr NAC	Total
1	Maniktala	20	34	21	5	80
2	Kasba	0	0	24	36	60
3	Paikpara	8	50	0	22	80
4	Thakurpukur	34	48	18	0	100
5	Salt Lake CSTC	39	15	0	46	100
6	Belghoria	42	39	0	39	120
7	Taratala	10	38	18	34	100
8	Lake	27	15	25	33	100
9	Garia	19	27	24	0	70

Table 13: Allocation of 1180 E-buses in Kolkata

Contd...

Table 13: Contd...

SI. No	Depot	9 Mtr AC	9 Mtr NAC	12 Mtr L/F AC	12 Mtr NAC	Total
10	Park Circus	25	28	0	22	75
11	Joka	17	0	10	23	50
12	Belgachia	44	41	0	20	105
13	Rajabazar	35	45	0	0	80
14	Ghasbagan	30	20	10	0	60
	TOTAL	350	400	150	280	1180

4.3 Power Demand Analysis for e-buses

The analysis of the present energy required for the operation of the E-buses was conducted based on the data provided by the WBTC. The Single Line Diagram of the conventional charging station in a WBTC bus depot is shown below in the Figure 9.

FIGURE 9: Single Line Diagram for E-bus charging in a depot

The daily charging pattern of the e-buses for a week in August 2022, when the field study was undertaken, is shown in Figure 10.

FIGURE 10: Weekly charging pattern of E-buses

Load Curve for e-buses

The assumptions considered for analysis of the load curve are presented below;

- » At each Depot, which will be allotted new Electric Buses, it was assumed that the charging machine will have a rating of 240 kW consisting of two charging guns. A single charging gun can charge an Electric Bus at 120 kW. Charging gun used is GB/T Type.
- » The details of the battery capacity for 1180 Electric Buses are given in Table 14.

Table 14: Battery capacities of planned buses

Type of EBuses	Number of e-Buses	Battery Capacity (kW)
9 Mtr AC	350	200
9 Mtr NAC	400	200
12 Mtr L/F AC	150	300
12 Mtr NAC	280	400

- » Two types of charging situations are considered while the estimation of charging load curves for Electric Buses,
 - a) Night Charging (Conventional Charging)
 - b) Top-up charging (Opportunity Charging)

Charging after operational hours is assumed to occur between 22:00 hours and 10:00 hours. Electric Buses will be fully charged during this period for their next day/ shift operation. The initial State of the Charging (SoC) of arrived Electric bus is taken as 15% at the point at which charging is started. It is based on the existing data on charging old Electric Buses. All the Electric Buses are assumed to get fully charged during this period.

On the other hand, it is assumed that top-up charging last from 45 to 50 minutes approximately. It would mostly occur during day time considering the normal operational time duration for Electric Buses in the day time. Based on this charging period, along with the existing data of charging old Electric Buses, battery capacities of Electric Buses and charging machines rating, the initial SoC at the start of charging for arrived Electric Buses is taken as 25%.

The charging guns assumed at each Depot are approximately 1:2 with respect to the total number of new Electric Buses along with the old ones allotted at each Depot. Based on the assumptions, the estimated charging guns at each depot are shown in Table 15.

S.No.	Depots Name	Charging Guns (Old + New)	Demand by Depot (Approx. Value in kW)
1	Belghoria *	60	4000
2	Belgachia	52	3467
3	Garia	32	2133
4	Ghasbagan	28	1867
5	Joka	24	1600
6	Kasba *	32	2133
7	Lake *	52	3467
8	Maniktala	40	2667
9	Paikpara	40	2667
10	Park Circus	36	2400
11	Rajabazar	40	2667
12	Salt Lake CSTC *	52	3467
13	Taratala	48	3200
14	Thakurpukur *	52	3467

Table 15: Number of charges required and power demand of E-buses

* indicate the depots which also have old Electric Buses along with new ones.

The analysis of the present energy required for the operation of the E-buses was conducted based on the data provided by the WBTC. The primary data source included the charging sheets from various E-bus depots in Kolkata.

FIGURE 11: Load curve due to charging of existing E-buses

4.4 Renewable Energy Potential Assessment

During site survey it was observed that the depot rooftop had the potential for installation of solar panels for the generation of electricity. The Table 16 shows the solar energy potential.

Parameters	Values
Average Annual Global Horizontal Irradiance (GHI)	907* W/m ²
Rooftop area under WBTC which can be used for Solar PV installation	66965 m ²
Total number of PV Modules required	26199
Nominal Power of Solar PV installed	14.2 MW _p
Maximum Output Power (AC)	13 MW
Average Performance Ratio	0.865
Energy Produced per day	63.35 MWh
Energy Produced per year	5701 MWh
Source: *NREL Database: TERLAndusis	

			c
Table 16: Out	puts of RE pote	ential analysis	s for E-buses

Source: *NREL Database; TERI Analysis

It is observed that the potential for solar energy generation is 5.70 GWh, considering that solar generation per day is done only for 6 hrs.

The energy demand is approx 500 MWh, and the renewable energy potential is 63MW, which is 12% of the daily energy requirement at all depots combined for 1180 e-buses. To achieve net zero in this case, suitable power procurement mechanisms such as from open access or import from other areas may be analysed.

Financial Aspects of Solar Rooftop generation

RTS System Capacity/ Range	Upto 1 kW	>1kW upto 2 kW	>2 kW upto 3 kW	>3 kW upto 10 kW	>10 kW upto 100 kW	>100 kW upto 500 kW
Benchmark Cost (Rs./kW), excl GST	46923	43140	42020	40991	38236	35886

The cost for installation of Roof Top System (RTS) for general category states is given below;

Source: https://solarrooftop.gov.in/notification/130_notification.pdf

The solar panels are to be installed on the rooftop area available in the bus depots, which shall provide supply for charging of the e-Buses. The area available in each bus depot is given below, along with solar plant size). The commercial cost of electricity is taken to be Rs. 8/kWh.

	Roontop poten	that affact cach while acport		
Bus Depot	Area (sq.m.)	Proposed Solar Panel Capacity (kWp)	Output Power (kW)	kWh/day
Belghoria	3,374	712.8	651.84	3,150.58
Belgachia	6,809	1,438.56	1,315.10	6,372.82
Garia	1,242	262.44	239.90	1,191.48
Gariahat	3,435	725.76	663.27	3,244.15
Ghasbagan	2,045	432	394.62	1,874.88
Howrah	1,342	283.5	259.28	1,281.42
Joka	358	75.6	69.01	336.42
Kasba	3,108	656.64	599.99	2,974.58
Lake	3,681	777.6	710.64	3,491.42
Maniktala	2,715	573.48	524.16	2,569.19
Nonapukur	9,125	1,927.80	1,763.40	8,732.93
Paikpara	6,262	1,323.00	1,209.17	5,913.81
Park Circus	3,374	712.8	651.84	3,250.37
PRD	1,554	328.32	299.69	1,444.61

Table 17: Solar Rooftop potential under each WBTC depot

Contd...

Bus Depot	Area (sq.m.)	Proposed Solar Panel Capacity (kWp)	Output Power (kW)	kWh/day
Rajabazar	3,681	777.6	710.64	3,506.98
Salt Lake	3,885	820.8	749.83	3,636.14
Taratala	1,104	233.28	213.25	1,052.09
Thakurpukur	3,313	699.84	639.74	3,156.28
Tollygunge	4,818	1,017.90	929.75	4,570.37
New Town	654	138.24	126.56	590.28
Karunamoyee	1,086	229.5	210.19	1,012.10
Total	66,965.00	14,147.46	12,931.86	63,352.90

Table 17: Contd....

As per the benchmark cost provided by MNRE, the total investment to install 14MW of solar power plant is estimated to be Rs. 46.65 Crores across all the bus depots. Considering the life of solar panels to be 25 years, the gross lifetime saving is calculated to be Rs. 358.80 Crores. (*Source: https://solarrooftop.gov.in/rooftop_calculator*)

4.5 Recommendations

The load pattern for the 1180 new deployed Electric Buses along with the old ones, is estimated considering the assumptions described in the previous section. Three different Charging Scenarios are considered for the estimation of load pattern at all depots for Electric Buses.

Recommendation 1: Having Charging Point Utilization within 50%

Two cases are envisaged:

- » Case 1A: Uncontrolled Charging
- » Case 1B: Controlled Charging

Case 1A: Uncontrolled Charging: In this case it is assumed that the buses get charged in a random manner depending on the availability of buses in the depot. The pattern of arrival and departure of e-buses is not available is this case. However, it is assumed that most of the buses will available at night and during the afternoon for charging.

The load pattern is shown in Figure 12.

It is observed, in this case, there was a sudden ramping up of load demand in the night (10:00 PM to 11:00 PM), indicating close to full charging capacity utilization at the depots. In this case the charger utilization (i.e. ratio of how many hours per day is the charger charging the vehicle and the total hours in the day) is 35%.

The energy demand for this case is given in the table below. It is calculated to be 551 MW, considering 548 chargers installed for 9m length and 12m length e-buses.

FIGURE 12: Load curve due to E-bus charging (Case 1a)

Case	Type of e-bus	Proposed Charger Type	Proposed Charger rating	Number of Chargers	Power Demand (MW)	Hours of operation of charger	Energy Demand (MWh)
		Fast Charger	120 kW	F 40	65.7	8.4	551.88
Caco 1a	9 mtr	only	(Fast)				
Case Ta		Fast Charger	2*120 kW	540			
	12 mtr	only	(Fast)				

Case 1B: Controlled Charging: In this case it is assumed that the buses get charged in a predefined manner such that the buses are allocated specific slots in the depot. It is based on the arrival time of Electric Buses. The arrival and departure timings of the buses is given in Figure 13.

FIGURE 13: Arrival & Departure pattern of E-buses (Case1b)

The utilization of charging guns hence can be estimated as arrival times of the buses is known. It is presented in the table below.

Time (in hours)	Charging guns to be used per hour
22:00 to 1:00	(80 to 90) % of available charging guns
1:00 to 8:00	(20 to 40) % of available charging guns
8:00 to 10:00	(10 to 20) % of available charging guns
13:00 to 17:00	(up to 30) % of available charging guns
17:00 to 22:00	(60 to 80) % of available charging guns

The load pattern in this case is depicted in Figure 14.

FIGURE 14: Load curve due to E-bus charging (Case2)

In this case the charger utilization is 34%.

Case	Type of e-bus	Proposed Charger Type	Proposed Charger rating	Number of Chargers	Power Demand (MW)	Hours of operation of charger	Energy Demand (MWh)
		Fast Charger					
Case	9 mtr	only	120 kW (Fast)	E 4 0	FOF	0.4	401 4
1b		Fast Charger	2*120 kW	546	50.5	0.4	491.4
	12 mtr	only	(Fast)				

Recommendation 2: Having Charging Point Utilization above 50%

Case - 2: Optimized Charging: In this case, it is assumed that the buses primarily get charged during the night time and multiple buses can get charged with a single charger. However, the buses can also get charged intermittently during the daytime at depots. It is observed from Figure 15 that predominantly the buses arrive during the night and during the afternoon at the depots.

FIGURE 15: Arrival & Departure pattern of E-buses (Case 2)

The load pattern formed in this case is shown below;

FIGURE 16: Load curve due to charging of e-buses (Case 2)

In this case the charger utilization is 58%.

The energy demand for this case is shown below;

Case	Type of e-bus	Proposed Charger Type	Proposed Charger rating	Number of Chargers	Power Demand (MW)	Hours of operation of charger	Energy Demand (MWh)
	9 mtr	Fast Charger only	120 kW (Fast)		29.5	13.9	410.05
Case 2	12 mtr	Fast Charger only	2*120 kW (Fast)	246			

Summary of recommendations

The table below shows the inferences of the three charging scenarios with respect to the existing load pattern of Electric Buses. It can be seen from the Table that the estimation of peak load hours in Case 1b and Case 2 is in accordance with the existing peak load of the operational Electric Buses.

Inferences	Case 1a	Case 1b	Case 2
Load due to e-bus charging (MW at hours)	65.7 MW	58.5 MW	29.5 MW
% of city's peak load demand	2.52%	2.24%	1.13%

It also specifies a substantial rise in the peak load demand. The average load demand of charging Electric Buses has also increased between 1.13% and 2.52% of total city's load demand of 2606 MW.

The electricity demand at each depot is shown in Table18:

Table 18: Cl	hargers required	and energy demand	due to E-bus charging (Case 2)

S.No.	Depots Name	Station Code	e-buses (old+new)	Charging Guns (Old + New)	Demand by Depot (Approx. Value in kW)
1	Belghoria*	BD	128	60	4000
2	Belgachia	BHD	105	52	3467
3	Garia	GHD	70	32	2133
4	Ghasbagan	GBD	60	28	1867
5	Joka	JD	50	24	1600
6	Kasba*	KD	70	32	2133

Tab	le 1	8: (ontd

S.No.	Depots Name	Station Code	e-buses (old+new)	Charging Guns (Old + New)	Demand by Depot (Approx. Value in kW)
7	Lake*	LD	108	52	3467
8	Manicktala	MD	80	40	2667
9	Paikpara	PD	80	40	2667
10	Park Circus	PCD	75	36	2400
11	Rajabazar	RBD	80	40	2667
12	Salt Lake CSTC*	SLD	107	52	3467
13	Taratala	TD	100	48	3200
14	Thakurpukur*	TPD	108	52	3467

* are old depots in which old e-Buses are also considered while load estimation

The load pattern for charging is shown in Figure 17:

The charger utilization scenarios for the three cases are shown in Table 19:

SI. No.	Parameters	Case 1A- Uncontrolled Charging	Case 1B- Controlled Charging	Case 2- Optimized Charging
1	Number of Bus depots	14	14	14
2	Number of E-buses/ depot	85	85	85
3	Number of chargers available (guns)	548	548	246
4	Type of Charger	CCS	CCS	CCS
5	Rating of Charger/gun	120 kW	120 kW	120 kW
6	Single gun/ Double gun	9m- single gun	9m- single	9m- single gun
		12m- double gun	gun 12m- double gun	12m- double gun
7	Battery capacity of buses	9m- 200 kWh	9m- 200 kWh	9m- 200 kWh
		12m NAC- 300 kWh	12m NAC- 300 kWh	12m NAC- 300 kWh
		12AC- 400 kWh	12AC- 400 kWh	12AC- 400 kWh
8	Assumed charging time per bus	2 hrs. (conventional) + 45 mins. Opportunity	2 hrs. (conventional) + 45 mins. (Opportunity)	2 hrs. (conventional) + 45 mins. (Opportunity)
9	Time of maximum utilization of charger (in hrs. or specify time)	6 hrs.	3 hrs.	11 hrs.
10	Peak Demand	65.76 MW	58.56 MW	29.52 MW
11	Charger Utilization	35%	34%	58%

5. Charging Infrastructure for other Transportation Modes

The other modes of transportation in Kolkata include two wheelers, three wheelers, four wheelers, trams for land connectivity and ferries for water connectivity.

5.1 Route Analysis

3-Wheelers

There are 489 permissible routes for 3-wheeler in Kolkata where more than 37 thousand 3-wheelers are permitted to operate. As per Vahan database, there are currently around 9,000 electric 3-wheelers registered between 2013-2022 in the 7 RTOs surrounding Kolkata which are- Kasba, Behala, Alipore, Salt Lake, PVD Kolkata, Barrackpore and Barasat. It was seen that almost all of the registrations are from Barrackpore & Behala RTOs which fall outside the KMC boundary. During a stakeholder interaction, it was found that currently no electric 3-wheelers operate within the KMC boundary. But, outside the boundary, the fleet is mixed of LPG based and electric 3-wheelers. The map in Figure 17 shows the 3-wheeler operating routes in Kolkata. About 46% of the routes operate within the KMC boundary and hence don't have electrified 3 -wheelers operating in them. The routes outside the KMC boundary i.e. 54% operates both electric and LPG 3-wheelers.

The three wheelers are a mode of public transport operated by private owners on routes permitted by the Road Transit Authority (RTA) on specified routes. The details are given below:

Parameter	Numbers
Total road distance covered by 3-Wheelers (km)	2542
Average distance covered by a 3-Wheeler (km)	5.25
Number of three wheelers/km	14.6
Number of Locations with 3 –wheeler operations	152
Number of hotspots (permits more than 1000)	3
Contribution of hotspots in terms of number of permits	25%

Table 20: Route Analysis of 3-wheelers

Out of the 489 routes, there are 152 common locations identified based on the start and the end points of each route. The locations are provided in the figure below. Some of the locations such as: Ultadanga, Baguiati, Barrackpore station, have the highest number of permits (more than 1000) and can be classified as hotspots for three-wheelers. The three hot-spots account for more than a quarter of total three-wheeler permits in the city, as given in the map below:

FIGURE 18: 3-wheeler permitted routes in Kolkata

Source: Transport Department of West Bengal

FIGURE 19: Major locations of 3-wheelers in Kolkata

Source: Transport Department and TERI analysis

Trams

The trams are another popular mode of transport in the city. However, with an average speed of 10 km/hr, the trams are considered to be a slow mode of transport compared to other available means. The primary reason for the significant decrease in trams is because there have been no concrete steps taken for their revival which have ultimately resulted in the upkeep of tram bogeys and the decline of ridership. The operating network for trams is presented below:

FIGURE 20: Tram routes in Kolkata

Source: WBTC

As part of this study, the revival strategy for trams is presented based on the following approaches:

- » **Optimistic Approach-** Expanding the tram network by focusing on upgrading it with newer technologies, and constructing dedicated corridors.
 - a) **Upgrading the brake system:** By replacing mechanical and drum brakes with disc and dyanamic brakes, we can increase the operating speeds of the trams, thus help in increasing ridership.
 - b) **Move to Catenary-Free trams:** By using new bogeys for trams with APS (Alimentation Par le Sol) or SRS (Système de Recharge statique par le sol) technology, we can reduce the infrastructural requirements associated with the trams.
 - c) **Utilization of ICT:** By utilizing information & communications technology, we can enhance the traffic coordination an management between trams and other vehicles on road. Also, one card system for using different modes of transport can be viewed upon.
 - d) **Construct Dedicated corridors:** Dedicated routes for trams can serve as a better way to decongest the existing road traffic and also help in enhanced level of safety for the consumers.
- Pessimistic Approach- Closing down all the existing routes of trams i.e. 138 bogeys in holding & 13 km of operating network and looking towards other means of public transport such as metros or trolley buses.
- » Equanimous Approach- Finding out new and efficient ways of operating the present trams in the network and serving the purpose of general passenger movement in the existing operational routes.
 - a) **Improvement in Aesthetics:** WBTC's current holding of rolling stocks is 138 which mostly consists of old-generation tram and recently improved bogeys. Remaining trams could be improved in terms of overall aesthetics, providing low floors, upgradation of exiting bogeys, and make use of the "Pathadisha" application for providing an app-based journey plan through the multi-model network of public transportation (similar to a Delhi Metro app).
 - b) **Priority Signalling:** Introduction of "Priority Signaling" for trams would help in maintaining the traffic and interoperability between the vehicles operating on the road. An example of strict traffic rules by the management bodies and a strong communication network between the bogeys is shown. It is observed that implementation of 100% priority signaling increases the speed by 20%. The first step towards this mechanism is to form a new set of laws such as "Right of way" which includes all vehicle segments, pedestrians, and trams as well. Installing remote sensing units in the bogeys and across the routes a few meters apart from the nearest traffic signal. Then, creating a centralized monitoring system that would control the traffic movement based on the sensor indication between roadside unit sensors and the vehicle intelligent terminal.

- c) **Incentivize/De-incentivize:** In order to promote the use of trams, "Incentivization" or subsidizing the ticket prices of trams is essential. Strictness in parking by application of fines and rotations to reduce the private vehicles on the sides of the road. This would allow more free space on the roads and allow the operation of the trams in a hassle-free manner.
- d) **Interconnected Networks:** An overall "Tram + Bus + Metro" network should be focused upon to interconnect among the major metro as well as bus routes, Integration of different modes of public transport with a larger focus on trams will help in expanding the network. A total of about 22 Km of Tram infrastructure is required to connect the segregated metro line networks considering that the closed routes are made operational again. But it is also suggested that the tram routes are planned in the areas which are newly developed.

From	То	Via	Distance (kms)
Behala Chourasta Metro Station	Rabindra Sarobar Metro Station	New Alipore Petrol pump, Tollygunge circular road	3.31
Ballygunge Tram Depot	Hemendra Mukherjee Metro Station	Rashbehari Avenue	3.56
Howrah Maidan	Mominpur Metro Station	Upper Foreshore Road, Avni mall, Vidyasagar setu, Hastings, Diamond Harbour Road	9.85
Maniktala Main Road	Salt Lake sector 5 Metro Station	Bengal Chemical, Salt Lake H Block, National Institute of Homeopathy	4.93

- e) **Heritage Routes:** Connect all the areas of "historical/heritage importance" with trams, and make these areas pedestrian only. Interestingly, this decision has also been considered by some of the administrative authorities as the future of the trams. This is due to the assumption that the city is being forwarded towards a carcentric policy. Four routes including the current operational routes are classified as heritage routes. This includes route no 5 (Shyambazar-Esplanade) and route number 36 (Khidirpur-Esplanade). The revival of these two routes would not require much work as a layer of bitumen has to be pulled off for the tracks. One of the prime outcomes would be that it could be used for tourism purposes
- f) Selecting Appropriate Business Models: Various business models such as "Build-Lease-Transfer" (BLT) or "Build-Transfer-Lease" (BTL) could be used in the tram networks. In this case, the asset is leased, either by the public entity to the private partner or vice-versa. The role of the private partner is to bear the cost of CAPEX and manage the operations. Performance-based incentives to the operating firm and its employees could be provided.

Sl. No.	Approach	Method	Type of Strategy		Outcomes	Expenditure
1.	Optimistic	Upgrading the	Technical	»	Reduce braking distance	High
		Brake system		»	Better speed control	
			»	Achieve higher speeds		
				»	Increase in ridership	
		Move to Catenary-free	Technical	»	Avoid construction of overhead catenaries	High
		trams		»	Simultaneous operation as well as charging possible	
				»	Safe "Third rail" or Static Chargers	
				»	Regenerative braking possible	
		Sharing of the Electrical Infrastructure	Technical	»	Operation of Tram & charging of EV simultaneous	High
				»	Vehicle-to-Grid options possible	
				»	Regenerative braking possible	

Table 21: Revival Strategies for trams

Contd...

Accelerating Net Zero transition of public transportation systems in the city of Kolkata

.....

SI. No.	Approach	Method	Type of Strategy		Outcomes	Expenditure
		Utilization of ICT	Technical + Operational	»	Better coordination & traffic management	Medium
				»	Online ticket management system	
				»	"One-card" for multi- mode transportation	
		Construct Dedicated	Technical + Operational	»	"Hassle-free" movement for trams	High
		Corridors	+ Planning	»	Achieve high speeds	
				»	Possibility of automatization of bogeys in future	
2.	Equanimous	Improvement	Technical +	Im	proved bogeys	Medium
		in aesthetics	Operational	Inc	reased safety	
				Inc	reased comfort	
				Be	tter ticket management	
		Priority	Technical +	»	Better traffic control	Medium
		Signalling	Operational	»	Achieve higher speeds in trams	
				»	Increase in ridership	
		lncentivize/ Deincentivize	Operational	»	Less money spent on infrastructure	Minimal
				»	Promote the use of trams	
				»	Demote the use of private vehicles	
				»	More space on roads	
		Interconnected Network	Technical + Operational + Planning	»	Feeder routes between Trams, Buses, and Metros	High
				»	Tram Network expansion	
				»	Increase in ridership	

Table 21: Contd..

Contd...

I

Table 21: Contd..

SI. No.	Approach	Method	Type of Strategy		Outcomes	Expenditure			
		Heritage Route	Operational	»	Very less investment required	Minimal			
				»	Focus on the tourism aspect for trams and the city as a whole				
		Selecting Appropriate Business	Planning	»	Open the floor for private parties for operating/ manage the trams	-			
		Models		»	Possibilities for investment in tram expansion				
3.	Pessimistic	No Expansion, no approach	Planning	»	Look at other modes of public transport	Minimal			
				»	Use tram infrastructure for other purposes				

Ferries

In Kolkata, the ferries on the Hooghly river, which bifurcates the city, is another major mode of transport. The WBTC started its ferry services post-colonial era and it increased thereon as a means to help in traffic decongestion on the roads. All the ferries are fueled once every day at the fueling station which is located at Babughat. Details are given below:

Table 22: Ferry details under WBTC

Parameters	Values
Passenger Capacity of Cross Ferry Vessels	100, 150, 200, 250, 300, 384, 400
Passenger Capacity of Cruise vessels	30, 150, 200
Average Diesel Consumption of Cross Ferry Vessels	1300 L/day
Operational Hours per day of Cross Ferry Vessels	130 Hours

5.2 Power Demand Analysis

The cumulative power demand for EV Charging Stations at each individual location is given in Figure 21:

FIGURE 21: Estimated Power Demand due to Public EV charging (60 Locations)

5.3 Renewable Energy Potential Assessment

During site survey, it was observed that the buildings rooftop (i.e. in case of malls, residential apartments, etc.) had the potential for installation of solar panels for the generation of electricity. The Table below shows the solar energy potential considering 6 hrs. of solar generation potential per day:

Table 23: Analysis of Solar Potential in 60 locations

Parameters	Values
Average Annual Global Horizontal Irradiance (GHI)	907 W/m ²
Rooftop area under WBTC which can be used for Solar PV installation	7.2 km ²
Total number of PV Modules required	2916261.60
Nominal Power of Solar PV installed	5400484.44 MW _p
Maximum Output Power (AC)	13 MW
Average Performance Ratio	0.865
Energy Produced per day	6609.12 MWh
Energy Produced per year	603.08 GWh

Source: PVsyst Software

5.4 Recommendations

The criteria for selection of EV charging locations and the charging technology have been described in Section 3.5. The site suitability analysis was conducted based on the area available, and vehicle density, the charging stations have been proposed. For battery swapping stations, a minimum of 15.125 m² is required, while for EV charging stations, the minimum area requirement is 105 m².

The site suitability analysis was conducted as described below.

Preliminary Survey Site Survey and Traffic Survey » Primary Road Network and Bus routes » Land area available and its accessibility under WBTC were analysed and the was surveyed. bus routes with high frequency were » Road connectivity and distance from shortlisted. mass transit hubs and amenities were also checked. » A circular boundary of 2km radius around the existing EV stations was » Availability of Electrical Infrastructure created near these locations. » In the vicinity of the shortlisted routes » The average number of 2-wheelers, and outside the circular boundaries, 3-weelers, and 4-wheelers parked the available areas such as: open during the day and their duration of area and parking facilities near parking was recorded. Also the traffic commercial spaces, metro stations, density and movement of vehicles for malls, residential buildings, etc. were 60 locations was recorded from 40 considered. locations Outcome Outcome » Mapping of 60 locations throughout » Mapping of feasible locations for the city were identified for setting up installation of EV chargers based on the of EV Charging infrastructure for e-2W/ e-2W, e-3W, and e-4W traffic survey. e-3W/e-4W

Based on the above survey, the chargers/battery swapping systems are proposed for the identified feasible locations. They are presented in Table 24.

Location near the Location	Available Area n (Sq. m.) d, 7,095	Battery Swapping System (BSS) 30 kW	Slow Charger (10 KW)	Slow Charger	Fast Charger
L_1 CPC Groups	d, 7,095	1		(15 kW)	(50 kW)
Hastings				1	
L-2 Park Street Metro Statio	1,571 on		1	1	1
L-3 Maidan	1,834		1		1
L-4 Millenium P	ark 2,160		1	1	
L-5 Writers' Building	840		2		
L-6 Sealdah Sta	tion 2,184			1	1
L-7 Sapoorji	5,991			1	
L-8 HIDCO Bha	wan 17,231			4	2
L-9 Ecopark	10,211	1	1	1	1
L-10 City Centre	2 3,964		1	1	
L-11 New Town I Stand	Bus 2,882		2	1	
L-12 Central Parl Metro	x 4,662		6		
L-13 Dumdum Metro	95	1			
L-14 Airport	4,811				1
L-15 Baguiati	2,437	1		2	
L-16 Bangaon-Ku Highway	ılpi 1,320				1
L-17 Star Mall, Barasat	2,104		1	1	
L-18 City Centre	1 1,240		1	1	1
L-19 Salt Lake se 5 metro	ctor 3,113		1	2	
L-20 Dakshinesh Temple	war 5,904				3

Table 24: Proposed Chargers for various locations

Tab	le 24:	Contd

			Charger Technology Selected										
Location	Landmark near the Location	Available Area (Sq. m.)	Battery Swapping System (BSS) 30 kW	Slow Charger (10 KW)	Slow Charger (15 kW)	Fast Charger (50 kW)							
L-21	Kharda Industrial Area	6,068	1										
L-22	Noapara Metro	260	1										
L-23	Mani Square	1,499		3									
L-24	Salt Lake Stadium	801		1									
L-25	Shyambazar	138	2										
L-26	Girish Park	116	1										
L-27	Science City	4,940				1							
L-28	Fortis Hospital	13,614			3								
L-29	Ruby General	9,898	1		2								
L-30	Spencer's Ruby	403				1							
L-31	Metropolis Mall, Garia	794		1	1	1							
L-32	New Garia Metro	4,680		1									
L-33	Kavi Nazrul Metro	2,174		1									
L-34	Dhakuria	316				1							
L-35	South City mall	10,027			3								
L-36	Tollygunge	1,277	1	1	2								
L-37	Netaji Metro	3,298	1	1									
L-38	Behala Chowrasta	1,034	1	1									
L-39	Joka	343			1								
L-40	Majerhat	855		1		1							
L-41	Taratala	451	3										
L-42	Garden Reach	3,206			2								
L-43	Khiderpore	2,673			1								
L-44	Ballygunge	548			1								
L-45	Lake mall	114		1									

Contd...

	Landmark	Available	Charger Technology Selected										
Location	near the Location	Available Area (Sq. m.)	Battery Swapping System (BSS) 30 kW	Slow Charger (10 KW)	Slow Charger (15 kW)	Fast Charger (50 kW)							
L-46	Ladies Park, Mullick Bazar	19,487			1								
L-47	Quest Mall	724			3								
L-48	Alipore	12,192			1								
L-49	Golpark Gariahat	41	1										
L-50	Beltala	501		1									
L-51	Barasat	1,824	2		1								
L-52	Kalyani Highay	1,380			1	1							
L-53	Howrah Maidan	2,411	1		1								
L-54	Avani Riverside Mall	5,127	1	1	1								
L-55	Shalimar Station	1,298		1	1	1							
L-56	Howrah Station	5,565			2	1							
L-57	Jadavpur University (Lake Campus)	720			1								
L-58	KPC Medical College	519			1								
L-59	Bansdroni	299	1										
L-60	Thakurpukur	2,587		1									
Total		206344	22	34	48	20							

I

The locations of the sites are given in the map shown in Figure 22

FIGURE 22: Map view of 60 locations for public EV charging

Source: TERI analysis

All sites have adequate space for installation of transformers, and for required civil works.

Considering that the Chargers will be operated for 12 hrs a day, the energy demand envisaged due to the charging stations is 32.64 MW. The breakup is given below in Figure 23.

FIGURE 23: Estimated Energy Demand due to public EV charging

6. Public fleet Decarbonization Strategy for Kolkata

The city of Kolkata has six modes of transportation such as Buses, Three wheelers, Taxi, Metro, Tram, and Waterways. Current fuel mix of these modes are given below:

Mode	Fuel	Decarbonization
Buses	Diesel	Fuel Shift: Electricity partly powered through solar energy
Three Wheelers	Petrol, LPG, Diesel	Fuel Shift: Electricity partly powered through solar energy
TAXI / Four Wheelers	Petrol, LPG, Diesel	Fuel Shift: Electricity partly powered through solar energy
Metro	Electricity	Not Applicable under the current study
Tram	Electricity	Efficiency improvement
Waterways / Ferries	Diesel	Fuel Shift: Electricity partly powered through solar energy

The vehicle inventory in the city is given in detail in Chapter 1, corresponds to 820 tons of CO2e per day in the base year. The comparison of 'business as usual' scenario vs decarbonization path is given in the below figure and with the successful implementation of public transportation decarbonization over the next two decades city will be avoiding approximately 0.29 million tons of CO2e each year compared to the base year.

A detailed GHG inventory is developed for the city public transportation fleet considering the following:

- » Base year as 2022
- » Decarbonisation pathway 2022 to 2050
- » Annual GHG savings would be 0.29 million tons of CO2e per annum.
- » Total GHG emission reductions, over the next two decades accounts to 8.4 million tons of CO₂e.

In the below section, we have presented the detailed strategy / plan aiming towards the decarbonization / achieve the avoidance of 8.41 million tons of CO2 reductions from 2022 to 2050. Savings are aimed to be achieved through fuel switch / deployment of EV in various public transport options up to 2050.

FIGURE 24: Decarbonization Pathway for Public Transport in Kolkata

Source: WBTC, Transport Department and TERI analysis

This section presents a comprehensive plan to decarbonize public transportation in Kolkata, focusing on the electrification of three key modes: three-wheelers, buses and ferries. Through engaging narratives and data-driven insights, this section highlights the transformative potential of this initiative and its significant contribution towards building a greener future for Kolkata. Deployment schedule is broadly considered under 6 phases and the time frame is given below:

Under each phase we have elaborated the possible intervention which could be adopted aiming towards decarbonization path. In the subsequent sections, the detailed decarbonization of individual modes is explained.

Ρ	N
	1

Table 25: Phase wise decarbonization plan (2022-50)

Phas	Descrip	Total number of v	ICE	Electric power	GHG Emissions (t(CO (in tonnes)	Nox (in tonnes)	PM (in tonnes)	NH3 (in tonnes)	Total number of v	ICE	Electric power	GHG Emissions (t(CO (in tonnes)	Nox (in tonnes)	PM (in tonnes)	NH3 (in tonnes)	Total number of v	ICE	Electric power	GHG Emissions (t(CO (in tonnes)	Nox (in tonnes)	PM (in tonnes)	NH3 (in tonnes)
a	tion	ehicles			CO ₂)					ehicles			20 ₂)					ehicles							
	2022	33,308	24,376	8,932	33,972	355	388	36	19	33,308	24,376	8,932	9,562	355	388	36	19	1,633	1,553	80	2,64,033	890	588	8	36
-	2026	38,284	28,144	10,140	1,48,024	4,794	724	40	201	38,723	25,849	12,874	51,384	219	79	10	48	1,633	1,553	80	10,56,131	3,904	136	33	166
2	2031	44,504	32,854	11,650	2,12,335	5,654	838	45	256	43,988	25,630	18,358	99,813	1,297	315	206	48	1,633	1,553	80	13,20,164	5,654	838	45	256
m	2036	50,724	37,564	13,160	2,42,675	6,514	953	50	311	49,636	20,021	29,615	1,47,906	2,820	579	51	322	1,633	1,553	80	13,20,164	6,514	953	50	311
4	2041	56,944	42,274	14,670	2,73,014	7,373	1,067	55	367	56,105	13,267	42,838	2,04,544	4,868	815	56	378	1,633	1,553	80	13,20,164	7,373	1,067	55	367
S	2046	63,164	46,984	16,180	3,03,353	8,233	1,182	60	422	62,325	5,767	56,558	2,65,543	8,227	1,017	60	422	1,633	1,553	80	13,20,164	8,233	1,182	60	422
9	2050	68,140	50,752	17,388	2,64,527	7,206	1,028	51	377	67,534	0	67,534	2,56,763	1,297	315	206	48	1,633	1,553	80	10,56,131	7,206	1,028	51	377

58

Contd...
әро	Phase		-	2	m	4	IJ	9
M	Description	2022	2026	2031	2036	2041	2046	2050
Чì	Total number of vehicles	1,633	2,113	1,633	1,633	1,633	1,633	1,633
ЪЭ	ICE	1,553	853	0	0	0	0	0
uo	Electric power	80	1,260	1,633	1,633	1,633	1,633	1,633
sea ite:	GHG Emissions (tCO ₂)	0	1,52,505	8,35,555	10,49,028	10,49,028	10,49,028	839,222
ziu	CO (in tonnes)	890	3,685	4,693	4,077	2,933	1,601	303
rbo	Nox (in tonnes)	588	509	523	418	301	164	31
23	PM (in tonnes)	8	23	7	0	0	0	0
Ð	NH3 (in tonnes)	36	118	51	0	0	0	0
	Total number of vehicles	27	27	27	27	27	27	27
	ICE	27	27	27	27	27	27	27
	Electric power	0	0	0	0	0	0	0
١١	GHG Emissions (tCO ₂)	1,406	5,623	7,028	7,028	7,028	7,028	5,623
/8	CO (in tonnes)	-	9	7	7	7	7	9
	Nox (in tonnes)	28	113	141	141	141	141	113
	PM (in tonnes)	-	9	7	7	7	7	7
6.	NH3 (in tonnes)	0	0	0	0	0	0	0
43	Total number of vehicles	27	27	27	27	27	27	27
Вq	ICE	27	23	18	13	œ	m	0
uo	Electric power	0	4	6	14	19	24	28
ite	GHG Emissions (tCO ₂)	0	361	1,262	2,164	3,066	3,968	3,771
ziu	CO (in tonnes)	-	9	7	ε	0	0	0
rbo	Nox (in tonnes)	28	102	104	78	52	26	ŝ
629	PM (in tonnes)	, -	9	7	m	0	0	0
Ð	NH3 (in tonnes)	0	0	0	0	0	0	0

Table 25: Contd...

Source: TERI analysis

To achieve a successful 4% transition rate towards electric three-wheelers in Kolkata, the government must undertake a comprehensive and well-coordinated approach. The following measures should be implemented to facilitate this shift effectively:

- 1. **Financial Incentives:** The government should substantially increase demand-side subsidies and financial incentives for the purchase of electric three-wheelers in addition to the existing ones. By doing so, the upfront cost of these vehicles will significantly reduce, making them more affordable and enticing for potential buyers. This step will play a pivotal role in encouraging a larger number of people to convert to electric three-wheelers, thus accelerating the transition process.
- 2. Awareness Campaigns: Conducting extensive and targeted awareness campaigns is crucial to educate the public about the manifold benefits of electric three-wheelers. These campaigns must emphasize the substantial reduction in harmful emissions, lower operational costs, and their positive impact on the overall air quality and climate. By effectively communicating these advantages, the government can instill confidence and enthusiasm among prospective buyers, creating a growing demand for electric three-wheelers.
- **3. Capacity Building:** Focusing on comprehensive capacity-building initiatives for vehicle manufacturers, dealers, and service providers is essential. By offering technical training, knowledge enhancement, and necessary resources, the government can ensure the availability of electric three-wheelers adhering to BIS, ARAI, and/or relevant standards in the market. A well-supported supply chain and efficient support systems will further bolster the adoption of these eco-friendly vehicles.
- 4. Charging Infrastructure Development: To address range anxiety and promote a seamless transition, the government should prioritize the establishment of robust charging infrastructure across the city. A dense network of accessible charging stations will instill confidence among drivers and fleet operators, eliminating concerns related to vehicle charging and range limitations.
- **5. Collaboration with Industry Stakeholders:** Active engagement and collaboration with private sector players, non-governmental organizations (NGOs), and environmental organizations are crucial for a cohesive approach to address challenges related to electric vehicle adoption. By working together, these stakeholders can identify and resolve potential bottlenecks and streamline the transition process.
- **6. Regulatory Support:** Implementing favorable policies and regulations, such as tax exemptions and simplified registration processes, will provide a strong impetus for the switch to electric three-wheelers. These measures will lower the overall cost of ownership and operation, making electric vehicles even more attractive to consumers and businesses alike.
- **7. Public Transport Integration:** Collaborating with public transport authorities to integrate electric three-wheelers into their fleets can be a game-changer in accelerating adoption. Electric three-wheelers can complement existing public transportation services, providing

a greener and more sustainable option for short-distance travel. This integration will also positively influence public perception, driving further interest and demand for electric three-wheelers.

In conclusion, the successful shift towards electric three-wheelers in Kolkata hinges on a wellrounded and determined effort from the government. Such strategic interventions are vital to combat air pollution, mitigate climate change, and foster a sustainable and eco-friendly urban mobility ecosystem for a greener and cleaner future.

6.1 Pathway to Decarbonize Three-Wheelers

In Kolkata, three-wheelers play an important role in public transportation, offering convenient and accessible mode of travel for thousands of commuters. The electrification of three-wheelers in Kolkata is a vital step towards achieving a carbon-neutral public transportation system. Our deployment schedule showcases a well-planned transition that gradually eliminates the use of fossil fuel-powered ICE three-wheelers and replaces them with environmentally friendly electric vehicles. Recognizing the need for sustainable urban mobility, our project sets forth an electrification strategy that aims to replace all conventional three-wheelers with electric models by 2028.

Current Scenario and Business as usual (BAU)

As of 2022, Kolkata has 33,308 three-wheelers on the road and out of which; 19,788 are LPG autos; 4,557 are diesel autos, and 31 are CNG autos. City has 8,932 electric three wheelers' vehicles. The electrification process involves acquisition of new electric three-wheelers and to retrofitting of old three-wheelers as EV. As part of our strategy, 500 three-wheelers will be retrofitted each year till 2031 after which number will increase to 1500, ensuring a smooth and sustainable transition to electric mobility. This data provides the foundation for a strategic deployment plan that aims to gradually transition to a fully electric fleet while reducing the reliance on fossil fuel-powered vehicles.

In the baseline scenario the number of three-wheelers running on LPG, diesel, and CNG is projected to steadily increase over the years. By 2050, the baseline scenario shows a significant rise in the number of vehicles, with 42,300 running on LPG, 7,749 on diesel, and 17,388 on CNG. This substantial growth in ICE three-wheelers would have several negative implications for the city's environment and public health.

It would lead to increased emissions of greenhouse gases and air pollutants, contributing to air pollution and worsening the overall air quality in Kolkata. Additionally, the reliance on fossil fuels in the baseline scenario would perpetuate the city's dependency on non-renewable energy sources, hindering efforts to transition to cleaner and more sustainable transportation alternatives. Implementing the deployment plan for electric three-wheelers becomes crucial to mitigate these negative consequences and achieve a cleaner, greener, and more sustainable transportation system in Kolkata.

The plan's phased approach (as shown in figure 24), modal shifts, and retrofitting efforts aim to gradually replace conventional three-wheelers with electric models, reducing emissions, improving air quality, and promoting the adoption of clean energy technologies. By embracing this deployment plan, Kolkata can work towards a future where three-wheelers contribute to a carbon-neutral public transportation system, fostering a healthier and more liveable city for its residents.

FIGURE 25: Decarbonization Plan for 3-wheelers

Source: Transport department of West Bengal and TERI analysis

Decarbonisation Plan for Three Wheelers

The electrification of three-wheelers in Kolkata is a vital step towards achieving a carbon-neutral public transportation system. Our visionary deployment schedule showcases a well-planned transition that gradually eliminates the use of fossil fuel-powered three-wheelers and replaces them with environmentally friendly electric vehicles. By 2050, Kolkata's streets will be transformed into a cleaner, greener, and more sustainable transport network.

FIGURE 26: Deployment schedule of EV Three wheelers

Source: TERI analysis

GHG Emission Reduction - Decarbonisation of Three Wheelers

Figure 27 shows the GHG emissions reduction over 2022 to 2050. Based on the emissions reduction model developed, compared to the BAU by end of 2050 a total 10,35,514 tCO2e will be avoided through the deployment schedule; the Three-Wheeler Decarbonisation Pathway is given below:

FIGURE 27: GHG Emissions Three-Wheeler BAU vs Decarbonization Pathway

Source: TERI analysis

Accelerating Net Zero transition of public transportation systems in the city of Kolkata

6.2 Pathway to Decarbonize Buses

The electrification of buses stands as a cornerstone of the mission to decarbonize Kolkata's public transportation system. This section outlines a strategic pathway to replace conventional diesel buses with electric buses, revolutionizing the city's public transit and significantly reducing carbon emissions.

Current Scenario and Business as usual (BAU)

As of 2022, Kolkata operates a fleet of 1,553 diesel buses, contributing to air pollution and greenhouse gas emissions. WBTC has already deployed 80 electric buses on the road.

In the baseline scenario (as shown in Figure 28) the number of diesel buses remains constant throughout the projection period, with no transition to electric buses. By 2050, the baseline scenario shows a stagnant fleet of 1,553 diesel buses and 80 electric buses, resulting in a total of 1,633 buses.

Diesel buses are known for their high emissions of pollutants and greenhouse gases, contributing to air pollution and climate change. The absence of a transition to electric buses in the baseline scenario means that Kolkata would continue to rely on fossil fuels, exacerbating air quality issues and hindering efforts to achieve sustainability goals. By gradually replacing diesel buses with electric models and investing in sustainable transportation infrastructure, the city can significantly reduce emissions, improve air quality, and promote the use of renewable energy sources.

Source: WBTC

Decarbonization Plan for Buses

Figure 29 presents the projected pathway to decarbonize Kolkata's bus fleet under WBTC, emphasizing the gradual replacement of diesel buses with electric alternatives:

FIGURE 29: Deployment schedule of EV Buses

Source: TERI analysis

This ambitious pathway to decarbonize buses aligns with Kolkata's commitment to sustainability and cleaner air. By embracing electric buses, the city aims to improve air quality and create an eco-friendlier transportation system. The systematic replacement of diesel buses with electric alternatives showcases Kolkata's dedication to providing clean, efficient, and sustainable public transportation for its residents. Through this comprehensive plan, Kolkata is poised to become a leader in sustainable urban mobility, setting an example for other cities to follow. By transitioning to an all-electric bus fleet, the city demonstrates its commitment to a greener future and a more liveable environment for its citizens.

GHG Emission Reduction - Decarbonization of Buses

The following phases showing how the GHG emissions are reducing over a period of time and are reducing to 80% from BAU by the end of 2050 a total 49,74,366 tCO2e will be saving from following the deployment schedule for the projected period as shown in the Figure 30:

FIGURE 30: GHG Emissions, Buses BAU vs Decarbonization Pathway

Source: TERI analysis

6.3 Pathway to Decarbonize Ferries

The decarbonization of ferries plays a vital role in Kolkata's comprehensive plan to create a sustainable and eco-friendly public transportation system. This section outlines a strategic pathway for the transition from diesel-powered ferries to electric vessels, aiming to reduce emissions and promote a cleaner water transport network.

Current Scenario and Business as usual (BAU)

As of 2022, Kolkata operates 27 diesel ferries, contributing to air pollution and carbon emissions. However, the retro fitment plan aims to gradually replace these diesel ferries with electric alternatives, providing a greener alternative for commuters and tourists alike, and leading to a cleaner and more sustainable water transport system.

In the baseline scenario (as shown in Figure 31) we considered the 27 diesel ferries till 2050. Diesel ferries are known for their high emissions of pollutants and their contribution to water pollution. Implementing the deployment plan for electric ferries is crucial for Kolkata to improve water quality, reduce emissions, and promote sustainable practices in the transportation sector. By gradually replacing diesel ferries with electric alternatives and investing in clean energy infrastructure, Kolkata can create a more environmentally friendly and efficient water transportation network.

Decarbonisation Plan for Ferries

The following schedule presents the projected pathway for the decarbonization of ferries, highlighting the gradual replacement of diesel ferries with electric vessels as also shown in the Figure 32:

FIGURE 31: Baseline scenario projected Number of Ferry (BAU)

Source: WBTC

FIGURE 32: Deployment schedule of EV Ferries

Source: TERI analysis

Through a carefully planned deployment schedule, Kolkata aims to achieve a fully decarbonized ferry fleet by 2050. This ambitious initiative contributes to a cleaner and more sustainable water transport network, reducing pollution and improving the overall environmental quality of Kolkata's waterways. The gradual replacement of diesel ferries with electric vessels signifies Kolkata's commitment to sustainable development and reducing its carbon footprint. The electrification of ferries not only enhances air quality but also promotes a more enjoyable and environmentally conscious experience for commuters and tourists. By embracing the pathway to decarbonize ferries, Kolkata showcases its determination to lead in sustainable transportation solutions. The transition to electric vessels will inspire other regions and cities to prioritize eco-friendly alternatives.

GHG Emission Reduction - Decarbonisation of Ferries

The following phases showing how the GHG emissions are reducing over a period of time and are completely reducing to 100% from BAU by the end of 2050 a total 14,592 tCO2e will be saving from following the deployment schedule for the projected period as shown in the Figure 33:

FIGURE 33: GHG Emissions, Ferry BAU vs Decarbonization Pathway

Source: TERI analysis

6.4 Reduction of Air Emissions through decarbonization plan

Decarbonisation has dual benefits on the macro level and we have studied the impact is Carbon Monoxide, Nitrogen Oxide, Particulate Matter, and Ammonia reduction and detailed information can be found below.

Reduction of Carbon Monoxide (CO)

Our study focuses on quantification of the reduction of carbon monoxide emissions from public transportation in Kolkata City by implementing a decarbonization plan. The Figure 34 showcases the reduction in CO emissions over the years from 2022 to 2050.

The reduction of carbon monoxide emissions will be gradual each year, with the largest reduction predicted in 2040. We can expect the CO emissions to drop by 60 tonnes, 122 tonnes, 186 tonnes, and 251 tonnes by the year 2023, 2024, 2025, and 2026, respectively. The reduction will continue to increase each year, providing a safer and cleaner environment for the residents of Kolkata.

By 2050, we can expect a total reduction of 30,159 tonnes CO emissions, which is a significant number that will contribute to the sustainable development of Kolkata City. The implementation of this decarbonization plan is crucial, as it improves the air quality in the city, reducing the health hazards associated with air pollution and climate change.

FIGURE 34: Total CO Emission Profiling of Public Transportation in Kolkata

Source: TERI analysis

Reduction of Nitrogen Oxide (NOx)

The reduction of nitrogen oxide emissions from public transportation in Kolkata City is a crucial step towards building a clean air environment. Our study estimates that adopting a decarbonization plan that involves deploying electric three-wheelers, buses, and ferry's, and retrofitting current ICE engines with electric will lead to a significant reduction of NOx emissions.

As per the calculations, its expect a total reduction of 13,472 tonnes of NOx emissions by 2050 with the decarbonization implementation(as shown in Figure 35). The reduction will be gradual over the years but will increase significantly at 2028, reduction of 324 tonnes. The implementation of this plan will also contribute towards mitigating climate change and achieving a sustainable and equitable future.

FIGURE 35: Total NOx emission profiling of Public Transportation in Kolkata

Source: TERI analysis

Reduction of Particulate Matter (PM)

Reducing particulate matter emissions from public transportation in Kolkata City is crucial for improving air quality and public health.

FIGURE 36: Total PM emission profiling of Public Transportation in Kolkata

Source: TERI analysis

As shown in the Figure 36, its expected a gradual reduction in PM emissions over the years and with the implementation of decarbonization, its estimated a total reduction of 1,151 tonnes of PM emissions by 2050. The reduction in PM emissions starts with 5 tonnes in 2023 and increases incrementally each year. The reduction is consistent and ranges from 10 to 50 tonnes from 2024 to 2050.

Reduction of Ammonia (NH₃)

Our study accounts the reduction of ammonia (NH_3) emissions from public transportation in Kolkata city along with GHG emission reduction. To achieve this, we have developed a decarbonization plan that involves the deployment of electric three-wheelers, buses, and ferries, as well as the retrofitting of current internal combustion engines (ICE) with electric technology. The Figure 37 showcases the estimated reduction of NH_3 emissions over the years, if our plan is adopted. Beginning in 2022, with no reduction in NH_3 emissions, we anticipate a gradual decrease in the subsequent years.

FIGURE 37: Total NH₃ emission profiling of Public Transportation in Kolkata

Source: TERI analysis

The total reduction in NH_3 emissions over the entire period is estimated to be 2,182 tonnes. This reduction signifies improvement in air quality and a positive step towards reducing pollution in the city.

Through the adoption of our study's decarbonization plan, Kolkata can pave the way for other cities to follow suit in reducing ammonia emissions and promoting sustainable transportation practices. The data provided showcases the potential positive impact our plan can have on the city, both in terms of reducing pollution and improving air quality.

6.5 Financial Requirements for Decarbonization

Decarbonization of public transportation in Kolkata over the next 28 years will require finance around INR 73,294 million. This includes:

- » INR 68,249 million for deploying electric public buses
- » INR 4,790 million for electric three-wheelers. The three-wheeler decarbonization plan covers swapping stations, retro fitment, and solar infrastructure development at a cost of INR 200 million, INR 2016 million, and INR 2574 million respectively.
- » INR 255 million for electric ferries. The ferry decarbonization plan involves retrofitting one ferry each year with an electric engine, along with installing renewable charging stations at a total cost of INR 224 million. Additional costs include INR 14 million for chargers and INR 17 million for developing solar infrastructure for charging the electric ferries.

These investments will not only reduce greenhouse gas emissions but also improve air quality in Kolkata.

Possible funding sources

Below table presents the various funding streams, WBTC (West Bengal Transportation Corporation) can access finance to implement the suggested decarbonization plan at large scale.

Funding Source	Eligibility	Requirements	Limitations	Revenue Stream	Financing Mechanism
Green Climate Fund	Open to projects that reduce greenhouse gas emissions and promote sustainable development	Application for funding	Funding available on a competitive basis	Repayment of loan with interest	Grant / Loan
National Clean Energy Fund	Open to projects that promote clean energy and reduce greenhouse gas emissions	Application for funding	Funding available on a first-come, first-served basis	Repayment of loan with interest	Grant

Table 26: Potential Funding Sources

Table 26: Contd.	•••
------------------	-----

Funding Source	Eligibility	Requirements	Limitations	Revenue Stream	Financing Mechanism
Multilateral Development Banks	Open to projects that promote sustainable development	Application for loans	Loans available at concessional rates	Repayment of loan with interest	Loan
Carbon Market	Open to projects that reduce greenhouse gas emissions	Implementation of emission reduction projects and sale of certified emission reduction credits	Funding available based on the number of credits earned	Sale of certified emission reduction credits	Market- based mechanism
State Budget	Open to projects that are included in the state budget	Inclusion in the state budget	Funding available based on the availability of funds	None	Grant
Public-Private Partnerships (PPP)	Open to projects that involve collaboration between the public and private sectors	Development of PPP projects	Funding available based on the terms of the PPP agreement	Revenue- sharing or profit- sharing	Partnership
Municipal Bonds	Open to municipalities that want to raise funds for infrastructure projects	lssuance of municipal bonds	Funding available based on the demand for the bonds	Repayment of bond with interest	Bond
Impact Investing	Open to investors who want to support social and environmental causes	Investment in impact projects	Funding available based on the terms of the investment	Repayment of investment with interest or equity	Investment

Contd...

Table 26: Contd...

Funding Source	Eligibility	Requirements	Limitations	Revenue Stre <u>am</u>	Financing Mechanism
State EV Policy	Open to WBTC for the purchase of electric buses and chargers	Meeting the eligibility criteria of the policy	Maximum amount of finance available is up to 50% of the cost of the vehicle or charger	Subsidies or incentives for the purchase of electric vehicles	Policy-based mechanism
Swachh Bharat Mission	Open to WBTC for the installation of waste-to-energy plants and other clean energy projects	Meeting the eligibility criteria of the mission	Maximum amount of finance available is up to 50% of the project cost	Sale of electricity or certified emission reduction credits	Mission- based mechanism
Smart Cities Mission	Open to WBTC for the implementation of smart transportation projects	Meeting the eligibility criteria of the mission	Maximum amount of finance available is up to 50% of the project cost	Sale of services or products	Mission- based mechanism
Atal Mission for Rejuvenation and Urban Transformation (AMRUT)	Open to WBTC for the construction of bus depots and other infrastructure projects	Meeting the eligibility criteria of the mission	Maximum amount of finance available is up to 50% of the project cost	None	Mission- based mechanism

The above stated policies and programs can help in generating finance for the decarbonization transportation opportunities. Overall, these policies aim to encourage and support the transition towards cleaner and more sustainable public transportation in Kolkata by providing financial support.

7. Stakeholder discussions and capacity building workshop

7.1 Creation of a State-level public e-mobility stakeholder consultation group

Kolkata was one of the first cities in India to implement an electricity-run public transport system with the introduction of the electricity-driven tram in 1902. For an easier technology shift and the integration in public transportation networks, it is suggested that WBTC officials participate in the capacity-building programme. Capacity building programme is a significant step to involve stakeholders and experts who would provide inputs to decarbonize the public transport in a more resource efficient ways and also by adopting low hanging fruits which would aim resource optimization.

Therefore, in order to decarbonize the public transport, TERI in support with WBTC has conducted various capacity building workshop for the employees of WBTC to address key challenges & gaps related to technology implementation, charging infrastructure, possible revenue streams for successful implementation of electrified vehicles transition.

This section mainly focuses on creating public transport electrification stakeholders consultation group comprising primary and secondary beneficiary of the project. The aim of stakeholder consultation and capacity building workshop were:

- » Develop a comprehensive understanding of the technological, financial, and administrative measures required to transition to electric vehicles
- » Address ground-level infrastructural implementation challenges and find ways to finance them
- » Exchange information and best practices for electrifying public transportation, including technological, financial, and administrative measures
- » Discuss cross-cutting issues like charging optimization, asset utilization, and innovative business models
- » Foster stakeholder cooperation to promote sustainable public transport in Kolkata.

FIGURE 38: Stakeholder Mapping

7.2 EV forum-Need of accelerator cell; Nodal person in charge of WBTC

In Kolkata, WBTC and Govt. of West Bengal are responsible for the execution of the electric mobility. In order to expedite deployment, the EV Accelerator Cell/ forum is required which will function as a central entity and its necessary to develop such a EV accelerator cell/forum which will create capital, foster innovation, establish policies, bring the latest technology, establish charging infrastructure and develop grievance cell.

The major responsibilities of the EV Accelerator Cell/forum would also be to identify potential areas of collaboration between local and international firms, such as the development of battery manufacturing units, battery swapping stations and EV charging infrastructure. The cell also aims to bring together national and international investors to develop investment hubs. Also, the draft EV policy, the state of West Bengal has aided through the production of electric vehicles, battery storage, and related components, localization will increase investments.

Stakeholder consultations

As part of the study we have done multiple Stakeholder consultations and the details with respective outcome is given below:

Date	Consultation	Outcome
6th May 2022	Inception Meeting	A broad number of strategies were formulated to accelerate net zero transition of public transportation in Kolkata. TERI has promised to engage stakeholder consultation, opt for quality-oriented approach and planned to represent West Bengal as number one in building a sustainable public transportation using clean energy
14th June, 2022	Stakeholder consultation with Tramway officials	A detailed discussion about the challenges faced by the trams, routes travelled, stoppage points, daily fares, revenue generated, daily operation and revival strategies of tramways were addressed by the tramway officials.
29th August 2022 – 2nd September 2022	Stakeholder consultation with the Ferry officials	The launching of E-vessels were proposed in the routes connecting Salkia - Fairlie – Shipping. Charging spots were identified to charge the vessels.
31st August 2022	Stakeholder consultation with the WBSEDCL	The requirement to build new charging depots at Nilgunge Depot and Shapoorji Bus Stand were emphasized during the consultation. Cost-effective bus routes were identified. Further, it was addressed that the efficiency of charging E-buses can be improved by using opportunistic charging rules.
26th September,2022	Stakeholder consultation with Navalt Solar and Electric Boats, Team Sustain and CharlN	In the stakeholder discussion the production of solar- powered boats and other electric vessels, various technological interventions relating to e-ferries, alternatives for retrofitting and costing along with financing possibilities, charging technologies, and charging optimisation were majorily discussed. The manufacturing of solar boats were proposed and various technological intervention were discussed to increase the efficiency of the E-ferries.
13th March 2023	Stakeholder engagement with CESC, TVS Motors and Map my India	The discussion were primarily based on the safety issues with charging, creating maps of charging stations for easy location, budgeting, charging methods, peak demand, and government stakeholder participation. All of the issues raised will be addressed by TERI, and it will take any additional actions necessary moving forward. Additionally, TERI has consented to include stakeholder comments in its final report

Table 27: List of Stakeholder Interactions

Contd...

Table 27: Contd...

Date	Consultation	Outcome
10th May,2022	Capacity building workshop	The major outcomes were to identify the key challenges, knowledge sharing about best practises, CCS charging standard were promoted, market standardization, strategies to distribute batteries and building of charging infrastructure.

7.3 Development of learning programmes

The learning programmes were designed in such a way to give a comprehensive understanding of the charging infrastructure, mechanism of the grid integration, financial management, operational activities and asset utilization. All these components are essential to determine the manufacturing , demand and supply, market value and consumer's willingness to accept EVs as a mode of transport. Some of the learning programmes are given below in detail-

Electric vehicle charging infrastructure and its grid integration in India

The upgradation of the distribution network requires a significant amount of capital investment. DISCOMs can regain this investment through various means including securing financial support from the government, Imposing higher demand charges on customers who utilize electric vehicles (EVs) and commercial power outlets (CPOs) and Spreading the cost across the community.

The adoption of smart charging methods offers several advantages over system upgrades. It is a more cost-effective solution and does not require extensive infrastructure modifications. However, it does rely on the availability of communication and IT infrastructure. To implement time-based tariffs, tariff orders need to be in place. Additionally, investing in smart meters is necessary.

In the energy market, it is important to allow aggregated electric vehicles (EVs) to actively contribute as a load for ancillary services. This would necessitate regulatory interventions in the Indian Electricity Grid It is also beneficial for renewable energy sources to participate in sourcing EV charging. For example, the Green Open Access regulations now permit users with contracted demands of 100 kW or higher (previously it was 1 MW) to participate in the energy market.

Standardization is essential in some of the key areas within the electric vehicle ecosystem: chargers, communication, and e-roaming. In the context of chargers, it is important to establish consistent standards that ensure compatibility and seamless interaction between different charger models. Similarly, standardized communication protocols are crucial for enabling effective communication and data exchange between electric vehicles, chargers, and other components of the charging infrastructure. Lastly, interoperability in e-roaming is necessary to ensure that EV users can easily access charging networks across different locations, regardless of the service provider, through a standardized and interconnected system.

Asset utilization and operation

The requirement of an advanced platform can help in the appropriate utilization of vehicles as well as the charging infrastructure. An example of such system is the "AI-powered battery platform", (designed by 'Pointo' specifically for electric three-wheeler market). This innovative battery platform offers a comprehensive end-to-end ecosystem that includes standardization in charging infrastructure, tracking, data storage, security, and a buyback network. The working of the battery platform requires operational model which consists of various components, including a cluster-based approach, a hub and spoke design, microservices, and charging hubs. Additionally, it incorporates a cluster-type charging system and a setup for deploying batteries.

The introduction of the advanced battery platform has significant social and environmental impacts. On the social front, it brings several benefits, including:

- » Income improvement: The platform reduces capital expenditure and eliminates range anxiety, resulting in increased income for drivers. Their earnings can improve from Rs. 700 to Rs. 1200.
- » Medical credit shield: The platform provides all drivers with a credit shield in case of accidents, ensuring their financial protection when their lives are at risk.

- » Hospicash policy: A hospicash policy is implemented, offering drivers up to Rs. 50,000 for family benefits, specifically for medical assistance. Up to four family members can benefit from this policy.
- Promoting entrepreneurship: With the high demand for battery-related services in the emerging EV segment, the hub-based model creates opportunities for revenue generation through EV services. State Bank of India (SBI) has also started providing loans through PMEGP to support the establishment of battery and EV service ventures.
- Income generation and asset creation for the long term: The platform enables income generation and asset creation in the long run through a low-maintenance vehicle and an unlimited pay-and-use battery subscription model. Within 12 months, the vehicle can become debt-free, and there are no lifetime battery advance costs.
- » These social impacts contribute to the overall positive socio-economic development and well-being of drivers and their families, promoting sustainable entrepreneurship and financial security.
- » The introduction of the advanced battery platform also has significant environmental impacts including:
- Reducing carbon footprint: The platform promotes the adoption of clean and green energy, thereby contributing to a reduction in carbon emissions and mitigating climate change.
- » Decreasing dependency on fossil fuels: By providing 11,000 EVs and expanding to four more states, Pointo's ESG impact aims to reduce reliance on fossil fuels for transportation, leading to a decrease in greenhouse gas emissions.
- Pollution reduction: The advanced battery platform helps in reducing both air and noise pollution. With electric vehicles replacing traditional combustion engine vehicles, harmful emissions are significantly reduced, improving air quality. Moreover, the quiet operation of electric vehicles contributes to a reduction in noise pollution.
- These environmental impacts align with sustainable practices and contribute to the overall well-being of the environment by promoting clean energy usage, reducing dependence on fossil fuels, and mitigating pollution. It is further targeting Sustainable development goal mainly the SDG 1-no poverty; SDG 7- Affordable and clean energy; SDG 8- Decent work and economic growth; SDG 9-Industry,innovation and infrastructure; SDG 11-Sustainable cities and communities.

Empowering the next level e-mobility

In India there are two categories of vehicle one is the low voltage vehicles which includes majority of 2/3 wheelers available in the Indian market, as well as previous generation fleet cars like the Mahindra eVerito and Tata Tigor. It also includes some current generation commercial vehicles such as the Tata Ace Electric. Early fleet vehicles utilized a variation of the GB/T protocol known as the "Bharat Standard." Presently, the current generation of two-wheelers and three-wheelers predominantly use proprietary protocols and connectors. While there are ongoing

efforts to standardize and harmonize these protocols, there is currently no universally accepted industry standard.

The second is the high voltage vehicles which comprises current generation passenger cars and heavy-duty commercial vehicles. All passenger cars introduced or planned for the Indian market come equipped with the CCS (Combined Charging System) protocol. Previously, buses were evenly divided between CCS and GB/T protocols. However, recent tenders from the Indian government indicate a shift towards the CCS standard, prompting some manufacturers to transition from GB/T to CCS.

Some of the recommendation for charging infra deployment are-

- » Simple AC chargers can be installed to accommodate various models from different twowheeler and three-wheeler manufacturers.
- » If there is no specific recommendation for DC charging, it is advised to set up these chargers in later phase, once the manufacturers agree on a standard.
- » It is advised to install EV chargers along major highways at intervals of approximately 50 kilometers. In later stages, chargers can be deployed at shorter intervals and on both sides of the road to facilitate long-distance travel.
- » Additionally, it is recommended to allow the installation of AC or DC chargers in locations such as offices, malls, theaters, airports, and metro stations.
- » Dedicated taxi chargers should be installed at high volume transit points such as metro stations, airports, and railway stations.
- » To support this transition, BIS (Bureau of Indian Standards) approved chargers should be installed at bus depots, allowing open charging for operators. The cost of these chargers can be recovered through an increase in the per kilowatt-hour (KWh) charge.
- » It is suggested to engage in discussions with State Transport Undertakings (STUs) and private operators to identify high viability routes with heavy traffic and adequate range. Particularly, intercity operations within the range of 100-200 km, such as Chennai-Pondicherry, Mumbai-Pune, etc., should be prioritized.

Financial planning for Electric bus Transition

The transition to electric buses necessitates a significant change in financial planning due to the shift in the business model and cost structure. The cost structure of bus operations has undergone a fundamental transformation, becoming capital-intensive and operationally light. Despite the availability of incentives from both the Central and State Governments, the lack of access to long-term funding and financing remains a significant barrier for bus agencies looking to transition to electric buses. As a result, international financial institutions (IFIs) have become more attractive sources of funding for electric bus projects. This presents a golden opportunity for State Transport Undertakings (STUs) to attract external capital investment for e-bus fleets and the development of charging infrastructure, in addition to their traditional budgetary allocations.

To evaluate the costs and benefits of electric vehicles (EVs), a financial model can be created. This model assesses the capital expenditure (CAPEX) and operating expenditure (OPEX) associated with EV implementation. The CAPEX cost factors include the cost of the bus itself, charging infrastructure expenses, licensing, registration, and insurance costs, depreciation, and salvage value. On the other hand, the OPEX cost factors encompass staff expenses, fuel costs, and maintenance costs. By analyzing these input parameters, the financial model provides insights into the overall cost and potential cost savings resulting from the implementation of EVs.

RE based charging infrastructure in bus depot

- a) Decentralized Solar Systems in Bus Depots:
 - Implementing solar power systems within bus depots in a decentralized manner.
 - Installing solar panels on the depot premises to generate renewable energy locally.
 - This allows bus depots to meet their energy needs using clean and sustainable solar power.
- b) Solar Farms Exporting Energy from Remote Locations:
 - Establishing solar farms in distant locations to generate renewable energy.
 - Harnessing solar power through large-scale solar installations.
 - The energy produced at these solar farms can be transmitted and exported to other areas or the grid, contributing to the overall renewable energy supply.

Some of the other low hanging fruits for charging electric vehicles includes-Utilization of the Rooftop of the bus depot to have a larger coverage of solar panels. The number of buses for charging determines the capacity and scalability of the charging infrastructure. The charging time for buses can be in the morning or evening it influences the scheduling and utilization of the charging.

8. Conclusions

The study analyses the decarbonization of public transportation in the city of Kolkata and further studies the energy demand, power requirement, site suitability of public charging infrastructure for various vehicle segments. For e-Buses, the study for energy demand due to increase in buses is studied. Also, the renewable energy (specifically solar) potential for generation of electricity, along with the decarbonization roadmap for public transport is presented.

The summary of recommendations is given below;

For e-buses

	Case-1 A (Uncontrolled Charging)		Case-1 B (Controlled Charging)		Case-2 (Optimized Charging)
»	Charger utilization is between Case 1B and Case 2, i.e	»	Charger utilization is minimum (34%) in this case.	»	Charger utilization is maximum (58%) in this case.
»	The scheduling is difficult as charger utilization is dependent on random bus charging schedule.	»	Chargers are operated intermittently in the day and night. By optimum scheduling,	»	Chargers are operated intermittently during the day however they run continuously at night.
»	Redundant chargers can be made available only if charger schedule is optimized.		a charger can be islanded for maintenance.	»	There are no redundant chargers available hence the charger under maintenance may impact the overall charging schedule of the depot.

For e-2W, e-3W and e-4W

It is recommended that cumulatively 124 chargers may be installed in the city of Kolkata. This will lead to an energy demand of 32.64 MW.

Type of vehicle	Proposed Charger Type	Proposed Charger rating	Number of Chargers	Power Demand (kW)	Hours of operation of charger	Energy Demand (kWh)
e-2W	Slow Charging only	10kW	34	340	12	4080
e-3W	BSS Only	30kW	22	660	12	7920
e-4W	Slow Charging	15kW (AC Type 2)	48	720	12	8640
	Fast Charging	50 kW (DC Type)	20	1000	12	12000
Total			124	2720		32640

For renewable energy potential

84

The potential for solar generation was analyzed and it was found that at bus depots, the solar generation potential is 5.70 GWh per annum. For other charging stations' locations (for e-2W, e-3W and e-4W segment), the solar generation potential is based on the rooftops available close to the charging station site. It is calculated to be 603 GWh per annum.

Based on the decarbonization model developed for the public transportation for the modes such as Buses, Ferries, three wheelers the overall emission reductions over the period from 2022 to 2050 would be around 6 million tons of CO_2 with 800 tons of CO_2e per day. Model is developed considering 2022 as base year and decarbonization trend is analyzed up to 2050. Detailed model is developed with consideration related to the 100% conversion of public fleet to EV and the decarbonization pathway is given below. Under the category of buses decarbonization we have analyzed the impact specific to WBTC owned Buses only and private buses are not part of the scope of this study.

% Reduction of Emissions form Public Transportation over the years

In addition to the CO2e avoidance estimation, air quality impacts are also analyzed specific to Carbon Monoxide, Nitrogen Oxide, PM and Ammonia avoidance. Implementation of the decarbonization requires approximately 73,294 Million INR for both CAPEX and OPEX investment and the detailed costing for each mode is presented below. Costing calculations are made on the present scenario.

An important aspect related to the implementation of a decarbonization plan depends on various stakeholders' capacity development. As part of the study, we have conducted a series of workshops and focus group discussions with government officials, technology suppliers, and macro-level state-level public groups suggested to implement the decarbonization strategy.

Accelerating Net Zero transition of public transportation systems in the city of Kolkata

Annexures

Manufacturer	Type/	Emission	Num	ber of B	uses	Total	Mil	eage (kn	ו/L)
Name	Details	Standards	WBCSTC	WBCTC	WBSTC		WBCSTC	WBCTC	WBSTC
Volvo	Volvo AC	BS-IV	63			63	1.53		
	AC 9400	BS-IV		15		15		3.21	
	AC 8400	BS-III			38	38			1.7
	AC 9100	BS-III		14		14		3.15	
TATA	Non-AC	BS-IV	120			120	1.8		
	1623								
	Non-AC	BS-IV	45	118	49	212	2.12	2.8	2.5
	1613								
	Non-AC	BS-III	33	171	50	254	2.22	3.04	2.84
	1512								
	Non-AC 712	BS-III	4			4	3.5		
	AC 712 ES	BS-III	10			10	2.52		
	1618	BS-III		14		14		2.4	
	AC 1624	BS-III			24	24			1.54
	AC 1510 T	BS-II		8	8	16		3.2	2.27
EICHER	Non-AC	BS-IV	20	15	4	39			
	10.9								
	Non-AC	BS-III		35		35			
	20.15								
	Non-AC	BS-III		20		20			
	10.75								
Al Lynx	AC	BS-IV	38			38			
SML/	Cosmo	BS-IV	16	10		26			
Mahindra									

1. List of Diesel Buses under WBTC

Manufacturer	Type/	Emission	Num	ber of B	uses	Total	Mil	eage (km	1/L)
Name	Details	Standards	WBCSTC	WBCTC	WBSTC		WBCSTC	WBCTC	WBSTC
Ashok Leyland	Jan bus AC ALFBV8/1	BS-IV	169			169			
	Jan bus AC ALFBV8/2	BS-IV	277			277			
	Non-AC ALFBV1/188	BS-III	11			11			
	Non-AC ALFBV2/51	BS-III	15			15			
	Non-AC 1/37	BS-III	15			15			
	Non-AC 2/48	BS-III		43	15	58			
	4-/85	BS-III		24	11	35			
	4-/86	BS-III			5	5			
	AC 4/88	BS-II			2	2			
	Non-AC 4/88	BS-II		16	4	20			
	TF1812	BS-IV			4	4			
Total Number of	of Buses		836	503	214	1553			
Total Number o	of Routes		94	87	34	215			

Source: WBTC, TERI analysis

2. List of E-buses under WBTC

SI. No	Depot	9m E-Bus	12m E-Bus	Total E-buses
1	Belgharia	8	0	8
2	Kasba	0	8	8
3	Nonapukur	0	5	5
4	Thakurpukur	4	4	8
5	Howrah	5	5	10
6	Salt Lake	0	8	8
7	Lake	8	0	8
8	Gariahat	10	0	10
9	New Town	0	10	10
10	Digha*	5	0	5
	Total	40	40	80

Source: WBTC

SI. No.	Route No.	No. of Trip	Route length	Originating Point	Terminating Point	Alignment	Average Bus	**Operation Hours
~	AC-4B	7	33	Joka	New Town	Thakurpukur-Cancer Hospital- Kabardanga-Haridevpur- Karunamoyee-Tollygunge Metro-Rashbehari Xing	4	Both shift
0	AC-12	m	25	New Town (Sapoorji)	Howrah	Gariahat-Ruby-Chingrihata-SDF- College More-Technopolis. Narkel Bagan-Newtown-SDF- Chingrihata-SC City-Topsia-	10	12
m	AC-12D	4	21	Joka	Howrah	Exide- Esplanade-BBD Bag THAKURPUKUR-BEHALA- MOMINPUR-ZOO-PTS- RABINDRA SADAN-ESPLANADE- MISSION ROW XING-RED RAG	4	12
4	EB-14	р	31	Santragachi	Eco Space	Via-Betore More - Mandirtala- Toll Plaza - P.T.SRabindra Sadan-Beckbagan - Topsia Road Xing - Sc. City - Chingrihata - Nicco Park - Swastha Bhawan -College More-Technopolish- New Town-Narkelbagan- Unitech.	Q	Both shift
ц	AC-23A	m	35	Salt Lake Depot Gate	Rajchandrapur	Via : College More-New Town- Unitech-Eco Space-Aliah University-Daber More-ECO Park-City Centre II- Haldiram- Airport Gate No. 1- Belghoria Exp. Way-Dakshineswar- Ballyhalt.	~	12
								Contd

3. E-bus Routes under WBTC

Ρ

I

	**Operation Hours	Both shift	12	Both shift	Both shift			
	Average Bus	9	ы	7	Q			
	Alignment	RUBY-GARIAHAT-HAZRA-EXIDE- PARK STRFFT- FSPI	Dhalai Bridge-Patuli-Peerless Hospital-Ajay Nagar-Kalikapur- Ruby Hospital-Gariahat- Rashbehari Xing-Hazra Park-Rabindrasadan-Park Street- Esplanade-BBD Bag-Howrah Bridge East.	Dunlop,Sinthee More, Shyambazar,C.R. Avenue,Girish Park,Chitpur,Barrabazar.	Tollygunge Phari-Rashbehari Xing-Gariahat-Ruby-VIP Bazar- Science City-Chingrihata-Appolo Hospital-Bengal Chemical- HUDCO-Bangur-Raghunathpur- Kaikhali	Dunlop - Shyambazar - Maniktolla - Sealdah Beckbagan - Minto Park - Exide - Rabindra Sadan - PTS - Nabanna - Balepole	Gariahat- Ruby- Sc. City - Chingrighata- Vivekananda Yubha Bharati Stadium	Gariahat - Rubby - Science City - Nicco Park - SDF - New Town - Rabindra Tirtha
•	Terminating Point	Howrah	Howrah Station	Howrah Station	Airport Terminal	abanna -	arunamoyee	shyapriya Park -
	Originating	Patuli	Kamalgazi	Rathtala	Tollygunge	Rathtolla - N Santragachi	TG Metro- K	TG Metro-De Ecospace
	Route length	21	24.5	13	27			
	No. of Trip	4	m	m	7			
	Route No.	AC-24	AC-24A	AC-54	V-1	EB-1	EB 2A	EB-3
	SI. No.	9	~	∞	ი	10	1	12

4. Electrical Line Diagram of Tram Network In Kolkata:

Source: WBTC

5. Seasonal Load Pattern of CESC

Source: CESC

Accelerating Net Zero transition of public transportation systems in the city of Kolkata

6. Area identified for 60 shortlisted locations from the preliminary survey

Accelerating Net Zero transition of public transportation systems in the city of Kolkata

Location: L-30 Spencer's Ruby

Location: L-53 Howrah Maidan

Location: L-54 Avani Riverside Mall

Source: TERI analysis

Every service of the	L Location: L-2 Park Street Metro Station	Location: L-3,4,5 Maidan, Millenuim Park, aand Writer's Building
Location: L-6 Sealdah Station	Location: L-7 Sapoorji	Location: L-8,9 HIDCO Bhawan and Ecopark
Location: L-10 City Centre 2	Location: L-11 New Town Bus Stand	Everation: L-12 Central Park Metro
Location: L-13 Dumdum Metro	Location: L-14 Airport	Location: L-15 Baguiati

7. Rooftop Digitization of 60 Shortlisted locations (in order)

Source: TERI analysis

9. GHI of Kolkata city (Source: NREL Database 2020)

10. Summary of Stakeholder Interactions (Gist of Discussions):

» Inception Workshop (6th May 2022)

Discussion Point	Action to be taken
General guidelines	TERI is requested to follow the terms and conditions of using the logos of the sponsor.
Constitution of 'State- level public e-mobility stakeholder consultation group' and/ or 'Project advisory committee'	TERI team informed that the requirement and feasibility of having a stakeholder consultation group, and a project advisory committee would be discussed with West Bengal Transport Corporation (WBTC). The recommendation of WBTC would be followed on whether to constitute both or either one of them. TERI to provide a short note on the final recommendation of WBTC on the same, along with the envisaged role of the selected in the project.
Maintain a shared folder for putting all project- related documents by TERI	It is agreed to create a sub-folder for each work package and save the project documents accordingly.
Intent letter from WBTC	TERI to follow up with WBTC for the approval/ intent letter for the study. Post-approval, the TERI team will visit Kolkata for an inception meeting.
Monthly project review meeting	TERI has agreed to the same and requested flexibility with the review meeting dates.

» Stakeholder interaction regarding tramways (14th June 2022)

Questions		Answers- Summary Points
Which are the high-	»	High density routes were:
density routes now?	»	Khidirpur – Esplanade via Maidan
	»	Shyambazar – Esplanade
	»	Ballygunge – Tollygunge (The Ballygunge – Tollygunge route that has been stopped for 4 years, was the high-density route)
What all challenges are faced in operating the trams?	»	For Trams, there was used to be reserved track systems (. In 2003–2004, dedicated lines were discontinued) However, they now share the road with vehicles
	»	Trams face limitations in their speed and braking capabilities
	»	The absence of dedicated track systems (prevents them from moving at faster rates)
	»	Traffic lights regulate both automobiles and trams on the road, trams cannot bypass these signals, contributing to their constrained speed and longer braking distances
What is the latest time schedule followed by the operating trams?	»	The existing tram routes do not adhere to a strict time schedule. The timing of tram services is heavily influenced by peak hours and periods of high congestion
Details of distance, speed, stoppage and fares	»	The minimum fare for tram rides on Route no. 25 is either ₹6 or ₹7. This fare allows passengers to travel up to a maximum of 22 stops along the route. The average speed of trams on this route is approximately 10-15 km/hr. Each route spans a distance of approximately 8 kilometres.
Which category of people are the usual passengers?	»	The major commuters of the trams consists of elderly individuals, women, and children. Additionally, school and college students choose to travel by trams due to safety reasons. However, during holidays, the revenue generated by the trams experiences a decline of approximately 10-15%.
What are the currently operational	»	The Ballygunge to Tollygunge route (Route no. 24/29) covers a distance of 5.5 kilometers and includes 18 stops.
tramway routes?	»	Gariahat to Esplanade route (Route no. 25) spans a distance of approximately 7-8 kilometers and encompasses 22 stops.

Questions		Answers- Summary Points
How many tramcars are running in each route?	»	A total of 25 tramcars, comprising both single and double bogies, are in operation across the two routes
Can we get stoppage- wise revenue in each route?	»	Data regarding the time taken from one stop to another, as recorded by the Electronic Ticketing Machine(ETM) Not Available
Does tram route overlap with other mode of transport?	»	There is a significant overlap of 3-5 routes, particularly in the Esplanade area, where the tram route coincides with the metro route

» Stakeholder Interaction regarding ferries (2nd September 2022)

Summary Points

- » There are 33 operational ferries in all (4 cruises and 29 cross-ferry vessels)
- » Ferry bifurcation in terms of person carrying capacity: Cross Ferry Vessels have a person capacity of 100, 150, 200, 250, 300, 384, and 400, the cruise ship has a capacity of 30, 150, and 2 x 200
- » Cruise ships typically sails two to three times per month. The duration of their operation is determined by the number of reservations made by third-party entities
- » The refuelling station for boats is located at Babughat. To take advantage of the downtime when the train lines are not in use, the ferries are typically filled with fuel during night time hours. Average daily diesel consumption is 1300 litres
- » In normal day- all the ferries operate around 130 hours
- » The West Bengal Government has proposed the establishment of E-vessel routes connecting Salkia Fairlie Shipping (fares not fixed yet)
- » Shipping, Howrah, and Belur are the proposed locations for e-vessel charging
- » A circular railway track is located close to the ferry Ghats
- » Areas suitable for electronic charging of vessels: Shipping, Fairlie, Belur, and Kashipur. The railway tracks go through Dumdum, Bagbazar, Ballygunge, Park Circus, Bidhannagar, Ultadanga and Dumdum (in that order)
- » The land for Millennium Park is owned by Kolkata Port Trust, and AMD built it.
- » Rooftop areas (potential RTS areas) include the boat terrace area (150-200 sq. m.), jetty (30-40 m in length) and building office area (3500 sq. ft.)."

» Stakeholder Interaction with WBTC, CESC, Map My India, and TVS Motors (13th March 2023)

Highlighted points	Comments	Action to taken
The effect of bus charging for current and future e-buses, as well as 3Wheelers, Ferries, and Trams, on system demand (kW) during peak hours and concurrent peak	Mr. Rajiv Das from CESC asked about the impact on system demand during peak hours and the coincident peak for bus charging.	 » During the interaction, the TERI team agreed to make changes to the system demand and sudden peak for bus charges. » The TERI team also agreed to apply the same rules to trams, ferries, and three-wheelers.
Other than the bus depot and safety considerations, bus charging on the side of the road.	Bus charging at the roadside has been a source of safety issues, according to Mr. Rajiv Das from CESC.	 TERI team will incorporate the safety aspects of bus charging on the roadside in its final report.
For locating charging stations for various car kinds, a map or app will be created.	Dr. Brijmohan and Mr. Rajiv from Map My India recommended examining traffic volume and waiting times in specific areas to identify the vehicles that are frequently seen there and concentrating on installing recharge stations for such vehicles.	 In order to further identify which vehicles are frequently seen in that area and to focus on installing charge stations for those vehicles, the TERI team will identify traffic frequency and waiting times at specific places. In the final report, the TERI team will include a map
		that shows the locations of charging stations for various kinds of vehicles.
Financial assistance and a plan for the widespread installation of charging infrastructure	The models and financial assistance necessary for the widespread deployment of charging infrastructure were discussed by Mr. Anurag Yadav from TVS Motors.	» The financial model and financial assistance for the widespread deployment of charging infrastructure are included in the scope of this study as pointed by TERI.

Contd...

Highlighted points	Comments		Action to taken
GHG emission and air pollution mapping	To help with the transition to net-zero emissions, Dr. Brijmohan and Rajiv from Map my India advised mapping air pollution and GHG emissions levels route- wise.	»	TERI team will provide a baseline emission scenario and the project emission scenario for the Kolkata city for a whole year.
Various charging techniques and control methods	Mr. Anurag Yadav suggested to use different charging mechanisms and control strategies	»	In the final report, the TERI team will outline some of the best alternatives to the suggested charge mechanisms and control measures (that can be used in Kolkata).
Reduction in peak demand, and the use of renewable energy.	Mr. Anurag Yadav added regarding the distribution of load during peak demand, use of renewable energy for charging of electric vehicles	»	TERI team explained that all the mentioned points are coming under the scope of the study and will be incorporated in the final report
Engagement with government stakeholders	According to Mr. Rajiv Das, government officials will continue to interact with stakeholders to make sure that all concerns and recommendations are taken into account during the planning and execution of the net-zero transition.	»	TERI team will incorporate all the suggestions from the stakeholders in the final report

I

																					_	
Minimum	Minimum No of Chargers proposed for 4 W (CCS (50 KW) Fast Charger)			1		1						1				1	1					
Minimum No of	Chargers proposed for 4 W (Bharat AC-001 (7.4*2= 15KW) 5low Charger)	-			1				1				1	1	1			1	1	1		
Minimum No of	Chargers proposed for 2 W (Bharat AC-001 (3.3*3= 10KW) 5low Charger)		1				1	1		-	1											1
Minimum	No of Chargers proposed for 3 W (30KW Bulk Bulk Battery Swapping Charger)	-																			1	
	No of Fast Chargers can be installed based on Area Availability	67	2	10	-	10	6	12	~	4		17		57	71	17	13	12	14	34	2	23
	No of Slow Chargers can be installed based on Area Availability	19	5	10	_	10	30	12	~		~	17	~	23	71	17	13	12	14	34	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3
No of	Battery Swapping Chargers can be installed based on Area Availability	469	21	72	=	75	47	84	59	33	56	119	25	396	494	120	92	68	102	242	16	165
	No of Chargers required for 4 W (CCs (50 KW) Fast Charger)	-	2	2	2	1	1	1	-	-	-	2	2	-	-	-	1	1	1	2	-	-
No of	chargers required for 4 W (Bharat AC-001 (7,4*2= 15KW) Slow Charger)	2	3	3	3	2	2	2	2	2	2	4	4	1	2	2	2	2	2	3	2	2
No of	Chargers required for 2 W (Bharat AC-001 (3.3*3 = 10KW) Slow Charger)	2	2	2	2	1	1	2	2	2	2	3	3	-	-	-	-	-	-	1	2	2
No of	Chargers required for 3 W (30KW Bulk Battery Swapping Charger)	-	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	-
iy near to te	4 Wheelers	1173	2174	2174	2174	934	934	1587	1587	1542	1542	3080	3080	468	1576	1576	1576	1576	1576	1621	1531	1531
ricle Densit	3 Wheelers	30	349	349	349	0	0	0	0	0	0	828	828	513	153	153	153	153	153	108	204	114
Avg. Vel F	2 Wheelers	2391	1929	1929	1929	526	481	1356	1446	1536	1536	2501	2501	832	1083	1083	1083	1083	1083	993	1234	1234
near to ficsurvey)	4 Wheelers	9930	19934	19934	19934	8440	8440	15420	15420	15420	15420	21794	21794	2880	15306	15306	15306	15306	15306	15306	15308	15308
:le Density d Site (traf 70%	3 Wheelers	294	3490	3490	3490	0	0	0	0	0	0	3778	3778	4224	1080	1080	1080	1080	1080	1080	1136	1136
Vehid Propose	2 Wheelers	21210	15690	15690	15690	4806	4806	13552	13552	13552	13552	16006	16006	6516	9930	9930	9930	9930	9930	9930	10534	10534
d Site (site	Avg. wait time	60 MINUTES	30 MINUTES	30 MINUTES	30 MINUTES	60 MINUTES	120 MINUTES	60 MINUTES	60 MINUTES													
to Propose y) 30%	4 Wheelers	200	200	200	200	100	100	50	50	0	0	1000	1000	200	50	50	50	50	50	100	0	0
vehicles Near survey	3 Wheelers	0	0	0	0	0	0	0	0	0	0	500	500	100	50	50	50	50	50	0	100	0
Parked	2 Wheelers	300	400	400	400	50	0	0	100	200	200	1000	1000	200	100	100	100	100	100	0	200	200
	Area (Sq. M.)	7095	310	1095	166	1128	706	1265	895	494	840	1799	385	5991	7471	1817	1388	1349	1540	3666	249	2,500
	Traffic Survey Site	TSS 26	TSS 20	TSS 20	TSS 20	T55 19	TSS 19	TSS 18	TSS 18	TSS 18	TSS 18	TSS 34	TSS 34	T55 8	TSS 7	TSS 9	1559					
	Name	Ξ	L-2	L-2A	L-2B	L-3	L-3B	4	L-4A	-5	5-	-4 L-6	L-6A	L-7	8-1	L-8A	L-8B	L-8C	L-8D	1-8E	H-9A) <u>(-</u>)

11. Site suitability analysis for 60 locations

Accelerating Net Zero transition of public transportation systems in the city of Kolkata

111

-	Minimum No of Chargers proposed for 4 W (CCS(50 KW) Fast Charger)	1														-				1				-
Minimum No of	Chargers proposed for 4 W (Bharat AC-001 (7.4*2= 15(W) 51ow Charger)		-	1				1										1	1				-	
Minimum No of	Chargers proposed for 2 W (Bharat AC-001 (3.3*3= (3.3*3= (3.3*3= (3.3*3= (3.3*3) fow Slow Charger)				1	1	1		-	-	1	1	-	-								1		
Minimum	No of Chargers proposed for 3 W (30KW Bulk Bulk Battery Swapping Charger)														1		1							
	No of Fast Chargers can be installed based on Area Availability	54	16	17	20	4	3	19	7	5	9	8	5	6	0	45	4	9	8	5	6	6	10	-
	No of Slow Chargers can be installed based on Area Availability	54	16	17	20	4	3	19	7	5	9	8	5	6	0	45	4	6	8	5	6	6	10	-
No of	Battery Swapping Chargers Can be installed based on Area Availability	382	112	120	142	33	24	134	51	37	63	57	38	63	9	318	35	68	59	41	47	66	73	12
	No of Chargers required for 4 W (CC5 (50 KW) Fast Charger)	2	-	1	1	2	2	2	2	2	2	2	2	2	-	-	-	2	2	1	-	1	-	2
No of	Chargers required for 4 W (Bharat AC-001 (7,4*2= 15KW) 5low Charger)	3	2	2	2	3	3	3	3	3	3	3	3	e	2	2	2	3	3	2	2	2	2	m
No of	Chargers required for 2 W (Bharat AC-001 (3.3*3 = 10KW) Slow Charger)	1	2	1	1	2	2	2	2	2	2	2	2	2	-	-	-	-	1	1	-	1	-	-
No of	Chargers required for 3 W (30KW Bulk Battery Swapping Charger)	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	-	-
y near to te	4 Wheelers	1621	1531	1531	1531	1621	1621	1621	1689	1689	1689	1689	1689	1689	1508	1143	1561	1651	1651	1097	1097	1126	1126	1700
chicle Densit Proposed Si	3 Wheelers	114	114	114	114	153	153	153	208	208	208	208	208	208	339	287	500	140	140	176	176	152	242	47
Avg. Ve	2 Wheelers	1054	1234	1099	1099	1443	1443	1443	1241	1241	1241	1241	1241	1241	1093	1050	1101	1101	1101	1088	1088	1029	1029	816
near to ficsurvey)	4 Wheelers	15308	15308	15308	15308	15306	15306	15306	15982	15982	15982	15982	15982	15982	15080	10522	15602	15602	15602	10068	10068	9458	9458	7998
le Density d Site (traf 70%	3 Wheelers	1136	1136	1136	1136	1080	1080	1080	1180	1180	1180	1180	1180	1180	2490	1962	1396	1396	1396	1752	1752	1512	1512	462
Vehic Propose	2 Wheelers	10534	10534	10534	10534	9930	9930	9930	10154	10154	10154	10154	10154	10154	10922	10042	11006	11006	11006	9974	9974	7584	7584	8160
d Site (site	Avg. wait time	60 MINUTES	60 MINUTES	60 MINUTES	60 MINUTES	30 MINUTES	30 MINUTES	30 MINUTES	120 MINUTES	60 MINUTES.	60 MINUTES	30 MINUTES	30 MINUTES	30 MINUTES	60 MINUTES	60 MINUTES	60 MINUTES	60 MINUTES	120 MINUTES					
to Propose y) 30%	4 Wheelers	100	0	0	0	100	100	100	100	100	100	100	100	100	0	100	0	100	100	100	100	200	200	1000
vehicles Near surve	3 Wheelers	0	0	0	0	50	50	50	100	100	100	100	100	100	100	100	400	0	0	0	0	0	100	0
Parked	2 Wheelers	0	200	50	50	500	500	500	250	250	250	250	250	250	0	50	0	0	0	100	100	300	300	0
	Area (Sq. M.)	5774	1689	1812	2152	498	357	2027	767	562	959	855	568	951	95	4811	524	1028	886	615	705	998	1106	187
	Traffic Survey Site	TSS 9	TSS 9	TSS 9	TSS 9	TSS 7	TSS 7	TSS 7	TSS 6	TSS 14	TSS 12	TSS 39	TSS 39	TSS 39	TSS 11	TSS 11	TSS 10	TSS 10	TSS 5					
	И	L-9D	L-9E	L-10	L-10A	L-11	L-11	L-11A	L-12	L-12	L-12	L-12	L-12	L-12	L-13	L-14	L-15	L-15A	L-15B	L-16	L-16A	L-17	L-17A	L-18

	Minimum No of Chargers proposed for 4 W (CCS (50 KW) Fast Charger)						1	1	1										1					
Minimum No of	Chargers proposed for 4 W (Bharat AC-001 (7.4*2= 15KW) 5low Charger)	-			1	-														1	1	-	-	
Minimum No of	Chargers proposed for 2 W (Bharat AC-001 (3.3*3= 10KW) 5low Charger)		-	1								-	1	-	1									
Minimum	No or Chargers proposed for 3 W (30KW Bulk Bulk Battery Swapping Charger)									1	1					1	1	-						1
	No of Fast Chargers can be installed based on Area Availability	3	6	19	2	7	30	11	14	57	2	5	6	2	7	0	0	-	47	14	12	102	60	18
	No of Slow Chargers can be installed based on Area Availability	3	6	19	2	7	30	11	14	57	2	5	6	2	7	0	0	-	47	14	12	102	60	18
No of	Battery Swapping Chargers can be installed based Availability	21	48	136	17	23	213	77	100	401	17	40	44	16	53	3	6	8	327	103	84	713	421	128
	No of Chargers required for 4 W (CS (50 KW) Fast Charger)	2	1	1	2	2	1	-	1	-	1	-	1	-	1	1	1	-	2	2	2	2	2	2
No of	chargers required for 4 W (Bharat AC-001 (7.4*2= 15KW) 51ow Charger)	3	1	2	3		2	2	2	2	2	2	2	2	2	2	2	2	3	4	4	4	4	ε
No of	chargers required for 2 W (Bharat AC-001 (3.3*3 = 10KW) 5low Charger)	1	2	1	1	-	1	-	1	1	1	2	2	2	1	٦	1	-	2	1	٦	1	2	2
No of	Chargers required for 3 W (30KW Bulk Battery Swapping Charger)	1	1	1	1	-	1	1	1	1	1	0	0	0	0	1	1	-	1	1	٦	1	-	-
y near to te	4 Wheelers	1700	800	1599	1689	1689	1096	1096	1096	874	916	1238	1238	1238	1508	1487	1487	1403	2151	2636	2636	2636	2726	2276
chicle Densit	3 Wheelers	47	47	118	118	118	503	503	503	170	188	0	0	0	0	241	241	332	747	96	96	186	186	186
Avg. Ve	2 Wheelers	816	2166	1196	1016	1016	677	677	677	638	695	2040	2040	2040	1140	1165	1165	1129	1573	888	888	1068	1248	1248
near to ficsurvey)	4 Wheelers	7998	7998	15982	15982	15982	9158	9158	9158	8734	9158	12380	12380	12380	12380	14870	14870	14024	18806	22752	22752	22752	22752	22752
cle Density ed Site (traf 70%	3 Wheelers	462	462	1180	1180	1180	1422	1422	1422	1512	1422	0	0	0	0	2402	2402	2416	7464	960	096	096	960	960
Vehi Propos	2 Wheelers	8160	8160	10154	10154	10154	6766	6766	6766	6378	6766	11394	11394	11394	11394	11196	11196	11282	11226	8880	8880	8880	8880	8880
d Site (site	Avg. wait time	120 MINUTES	20 MINUTES	30 MINUTES	120 MINUTES	120 MINUTES	120 MINUTES	120 MINUTES.	30 MINUTES.	30 MINUTES.	30 MINUTES	120 MINUTES												
to Propose y) 30%	4 Wheelers	1000	0	0	100	100	200	200	200	0	0	0	0	0	300	0	0	0	300	400	400	400	500	0
ehicles Near surve	3 Wheelers	0	0	0	0	0	400	400	400	20	50	0	0	0	0	0	0	100	0	0	0	100	100	100
Parked v	2 Wheelers	0	1500	200	0	0	0	0	0	0	20	1000	1000	1000	0	50	50	0	500	0	0	200	400	400
	Area (5q. M.)	321	732	2053	256	804	3228	1168	1508	6068	260	605	659	235	801	43	94	116	4940	1562	1266	10787	6366	1938
	Traffic Survey Site	TSS 5	TSS 5	TSS 6	TSS 6	TSS 6	TSS 37	TSS 37	TSS 37	TSS 38	TSS 37	TSS 4	TSS 4	TSS 4	TSS 4	TSS 15	TSS 15	TSS 16	TSS 3	TSS 2				
	Name	L-18	L-18A	L-19	L-19A	L-198	L-20	L-20A	L-20A	L-21A	L-22	L-23	L-23	L-23	L-24	L-25	L-25A	L-26	L-27	L-28	L-28A	L-28B	L-29	L-29A

	Minimum No of Chargers proposed for 4 W (CCS (50 KW) Fast Charger)		1	1					-						
Minimum No of	Chargers proposed for 4 W (Bharat AC-001 (7.4*2= 15KW) 5low Charger)	1				1				1	1	1		1	
Minimum No of	Chargers proposed for 2 W (Bharat AC-001 (3.3*3= 10KW) 5low Charger)				1		-	1							-
Minimum	No or Chargers proposed for 3 W (30KW Bulk Bulk Battery Swapping Charger)												-		
	No of Fast Chargers can be installed based Availability	15	3	3	2	1	44	20	3	18	30	46	4	2	1
	No of Slow Chargers can be installed based on Area Availability	15	3	3	2	1	44	20	3	18	30	46	4	2	-
No of	Battery Swapping Chargers Can be installed based on Area Availability	105	27	27	17	8	309	144	21	130	212	321	32	19	13
	No of Chargers required for 4 W (CC (50 KW) Fast Charger)	2	2	2	2	2	2	1	2	2	2	2		-	-
No of	Chargers required for 4 W (Bharat AC-001 (7.4*2= 15KW) Slow Charger)	4	4	3	3	3	3	1	3	3	3	3	2	2	2
No of	chargers required for 2 W (Bharat AC-001 (3.3*3 = (3.3*3 = 10KW) Slow Charger)	2	1	1	1	1	-	1	2	1	1	1	3	×	3
No of	Chargers required for 3 W (30KW Bulk Battery Swapping Charger)	1	1	0	0	0	-	1	-	-	-	1	-	-	-
ty near to ite	4 Wheelers	2726	2456	2202	2112	2202	2112	87	2240	1938	1938	1938	1427	1472	1427
iicle Densi 'roposed S	3 Wheelers	186	96	0	0	0	14	480	383	245	245	245	1008	378	378
Avg. Vel P	2 Wheelers	1248	1068	796	796	616	621	314	1601	940	490	940	2514	2514	2784
ear to csurvey)	4 Wheelers	22752	22752	21120	21120	21120	21120	864	21942	14880	14880	14880	14264	14264	14264
e Density n I Site (traff 70%	3 Wheelers	096	960	0	0	0	0	4800	3824	2448	2448	2448	3776	3776	3776
Vehicl Proposed	2 Wheelers	8880	8880	6160	6160	6160	6160	432	16006	4896	4896	4896	25132	25132	25132
d Site (site	Avg. wait time	120 MINUTES	45 MINUTES	60 MINUTES	60 MINUTES	60 MINUTES	30 MINUTES	120 MINUTES	60 MINUTES.	120 MINUTES	120 MINUTES	120 MINUTES	30 MINUTES for 3 wheelers and 120 MINUTES for 2 wheelers	30 MINUTES for 3 wheelers and 120 MINUTES for 2 wheelers	30 MINUTES for 3 wheelers and 120 MINUTES for 2 wheelers
to Propose 1) 30%	4 Wheelers	500	200	100	0	100	0	0	50	500	500	500		50	0
ehicles Near survey	3 Wheelers	100	0	0	0	0	15	0	0	0	0	0	200	0	0
Parked v	2 Wheelers	400	200	200	200	0	5	300	0	500	0	500	0	0	300
	Area (Sq. M.)	1594	403	402	264	128	4680	2174	316	1962	3205	4860	486	294	199
	Traffic Survey Site	TSS 2	TSS 2	TSS 1	TSS 1	TSS 1	TSS 1	TSS 24	TSS 21	TSS 22	TSS 22	TSS 22	T55 25	TSS 25	TSS 25
	Name	L-29B	L-30	L-31	L-31A	L-31C	L-32	L-33	L-34	L-35	L-35A	L-35B	L-36	L-36A	L-36B

I

	Minimum No of Chargers proposed for 4 W (CC5 (50 KW) Fast Charger)							-														
Minimum No of	Chargers proposed for 4 W (Bharat AC-001 (7.4*2= 15(W) Slow Charger)	-					1						1	1	1	1		1	1	1	-	-
Minimum No of	Chargers proposed for 2 W (Bharat AC-001 (3.3*3= 10KW) Slow Charger)			-		-		-									1					
Minimum	vo or Chargers proposed for 3 W (30KW Bulk Bulk Battery Swapping Charger)		-		1					-	1	1										
	No of Fast Chargers can be installed based Availability	2	10	20	0	6	3	8	2	0	0	0	1	28	25	5	1	185	2	2	2	116
	No of Slow Chargers can be installed based on Area Availability	2	10	20	0	6	3	8	2	0	0	0	-	28	25	5	1	185	2	2	2	116
No of	Battery Swapping Chargers can be installed based on Area Availability	20	76	142	5	63	23	57	16	7	4	3	14	198	177	36	8	1288	14	15	18	806
	No of Chargers required for 4 W (CC (50 KW) Fast Charger)	-	-	-	1	1	1	-	1	1	1	1	-	1	-	2	1	2	2	2	2	4
No of	Chargers required for 4 W (Bharat AC-001 AC-001 (7,4*2= 15 KW) 51ow Charger)	2	1	1	1	1	1	2	1	1	1	1	2	2	2	3	2	4	4	4	4	8
No of	chargers required for 2 W (Bharat AC-001 (3.3*3 = 10KW) 5low Charger)	m	-	1	1	1	1	-	1	-	1	-	-	1	2	2	1	2	2	2	2	2
No of	Chargers required for 3 W (30KW Bulk Battery Swapping Charger)	-	-	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	-
near to e	4 Wheelers	1472	403	358	730	775	759	832	742	742	742	742	828	828	1173	2240	973	2894	2894	2894	2894	6150
icle Density oposed Sit	3 Wheelers	378	334	154	317	407	339	325	370	325	370	370	320	320	30	383	706	349	349	349	349	53
Avg. Veh P	2 Wheelers	2514	224	404	429	429	423	381	426	426	426	426	405	405	2121	1601	1004	2019	1569	1569	1569	2043
near to fic survey)	4 Wheelers	14264	3574	3574	7296	7296	7134	7416	7416	7416	7416	7416	7378	7378	9930	21942	97.22	19934	19934	19934	19934	52500
le Density I d Site (trafi 70%	3 Wheelers	3776	1536	1536	3168	3168	3 204	3248	3248	3248	3248	3248	3194	3194	294	3824	7056	3490	3490	3 4 9 0	3490	524
Vehic Propose	2 Wheelers	25132	2238	2238	3840	3840	3780	3810	3810	3810	3810	3810	3598	3598	21210	16006	8234	15690	15690	15690	15690	20430
d Site (site	Avg. wait time	30 MINUTES for 3 wheelers and 120 MINUTES for 2 wheelers	120 MINUTES	30 MINUTES	30 MINUTES	30 MINUTES	30 MINUTES	60 MINUTES	60 MINUTES	120 MINUTES	30 MINUTES	30 MINUTES.	120 MINUTES									
to Propose y) 30%	4 Wheelers	50	50	0	0	50	50	100	0	0	0	0	100	100	200	50	0	1000	1000	1000	1000	1000
ehicles Near surve	3 Wheelers	0	200	0	0	100	20	0	50	0	50	50	0	0	0	0	0	0	0	0	0	0
Parked	2 Wheelers	o	0	200	50	50	50	0	50	50	50	50	50	50	0	0	200	500	0	0	0	0
	Area (Sq. M.)	299	1155	2143	80	954	343	855	244	101	56	50	208	2999	2673	548	114	19487	214	231	279	12192
	Traffic Survey Site	T55 25	TSS 35	TSS 35	TSS 30	TSS 30	TSS 29	TSS 31	TSS 31	TSS 31	TSS 31	TSS 31	TSS 32	TSS 32	TSS 26	TSS 21	TSS 28	TSS 20	TSS 20	TSS 20	TSS 20	TSS 27
	Name	L-36C	L-37	L-37A	L-38A	L-38B	L-39A	L-40	L-41	L-41A	L-41B	L-41C	L-42A	L-42A	L-43	L-44	L-45	L-47	L-47A	L-47B	L-47B	L-48

115

	Minimum No of Chargers proposed for 4 W (CCS (50 KW) Fast Charger)							1						1			1							20	
Minimum No of	Chargers proposed for 4 W (Bharat AC-001 (7.4*2= 15KW) 51ow Charger)			-			1			1		1			1			-	1	1	1			48	
Minimum No of	Chargers proposed for 2 W (Bharat AC-001 (3.3*3= 10KW) Slow Charger)		-								1					1							۲	34	
Minimum	No or Chargers proposed for 3 W (30KW Bulk Bulk Battery Swapping Charger)	-			1	1			1				1									1		22	
	No of Fast Chargers can be installed based on Area Availability	0	4	11	1	4	1	11	2	20	22	2	23	6	3	2	27	6	18	6	4	2	24	1901	
	No of Slow Chargers can be installed based on Area Availability	0	4	11	1	4	1	11	2	20	22	2	23	6	3	2	27	6	18	6	4	2	24	1901	
No of	Battery Swapping Chargers can be installed based on Area Availability	~	33	78	13	29	12	79	15	145	159	18	162	45	27	14	192	46	130	48	34	20	171	13645	
	No of Chargers required for 4 W (CCs (50 KW) Fast Charger)	2	-	-	1	-	1	-	2	2	-	-	1	1	1	1	3	3	3	2	1	1	-	180	
No of	Chargers required for 4 W (Bharat AC-001 (7.4*2= 15KW) 51ow Charger)	÷	-	2	2	2	2	2	3	3	-	-	1	1	1	1	5	5	5	3	2	1	-	301	
No of	Chargers required for 2 W (Bharat AC-001 (3.3*3 = (3.3*3 = 10KW) 5low Charger)	2	-	-	1	-	1	-	2	2	2	-	1	1	1	1	2	2	2	2	1	1	-	180	
No of	Chargers required for 3 W (30KW Bulk Bulk Swapping Charger)	-	-	-	1	1	1	-	1	1	-	-	1	1	1	1	1	1	1	1	1	1	-	111	
ty near to ite	4 Wheelers	2195	763	946	946	946	1081	1081	1622	1622	793	343	433	793	793	793	3332	3332	3332	1971	1272	775	730	195334	
ehicle Densi Proposed Si	3 Wheelers	383	50	242	242	242	279	279	954	954	524	74	74	164	164	164	954	954	954	747	458	317	317	33470	
Avg. V	2 Mheeler	1601	582	849	849	849	1018	1018	1581	1581	2093	293	293	383	383	383	1491	1491	1491	1303	1084	402	402	143 207	
near to fficsurvey)	4 Wheeler	21942	7622	9458	9458	9458	10356	10356	15314	15314	3428	3428	3428	3428	3428	3428	15314	15314	15314	18806	10016	7296	7296	1703098	
cle Density ed Site (tra 70%	3 Wheeler	3824	494	1512	1512	1512	1890	1890	9540	9540	732	732	732	732	732	732	9540	9540	9540	7464	4128	3168	3168	269482	
Vehi Propos	2 Wheelers	16006	5818	7584	7584	7584	9730	9730	14904	14904	2924	2924	2924	2924	2924	2924	14904	14904	14904	11226	7232	3840	3840	1223598	
id Site (site	Avg. wait time	30 MINUTES.	120 MINUTES.	30 MINUTES	30 MINUTES	30 MINUTES	60 MINUTES	0 MINUTES	60 MINUTES	30 MINUTES	30 MINUTES	30 MINUTES	120 MINUTES	120 MINUTES	120 MINUTES	60 MINUTES	120 MINUTES	60 MINUTES	60 MINUTES						
to Propose y) 30%	4 Wheelers	0	0	0	0	0	50	50	100	100	500	0	100	500	500	500	2000	2000	2000	100	300	50	0	27750	
vehicles Near surve	3 Wheelers	0	0	100	100	100	100	100	0	0	500	0	0	100	100	100	0	0	0	0	50	0	0	7205	
Parked	2 Wheelers	0	0	100	100	100	50	50	100	100	2000	0	0	100	100	100	0	0	0	200	400	20	20	23115	alysis
	Area (Sq. M.)	41	501	1182	201	441	183	1197	224	2186	2397	272	2458	674	408	216	2902	169	1972	720	519	299	2587	206344	ERI an
	Traffic Survey Site	TSS 21	TSS 40	TSS 10	TSS 10	TSS 10	TSS 13	TSS 13	TSS 17	TSS 17	TSS 33	TSS 33	TSS 33	TSS 33	TSS 33	TSS 33	TSS 17	TSS 17	TSS 17	TSS 3	TSS 23	TSS 30	TSS 30		rce: Tł
	Name	L-49	L-50	L-51	L-51A	L-51B	L-52	L-52A	L-53	L-53A	L-54	L-54A	L-54B	L-55	L-55A	L-55B	L-56	L-56A	L-56B	L-57	L-58	L-60	L-60A		Soui

